BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28892462)

  • 1. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests.
    Coakley SL; Passfield L
    J Sports Sci; 2018 Jun; 36(11):1228-1234. PubMed ID: 28892462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.
    Karsten B; Baker J; Naclerio F; Klose A; Bianco A; Nimmerichter A
    Int J Sports Physiol Perform; 2018 Feb; 13(2):183-188. PubMed ID: 28530476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time to exhaustion during cycling is not well predicted by critical power calculations.
    Pallarés JG; Lillo-Bevia JR; Morán-Navarro R; Cerezuela-Espejo V; Mora-Rodriguez R
    Appl Physiol Nutr Metab; 2020 Jul; 45(7):753-760. PubMed ID: 31935109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Images depicting human pain increase exercise-induced pain and impair endurance cycling performance.
    Astokorki A; Flood A; Mauger A
    J Sports Sci; 2021 Jan; 39(2):138-146. PubMed ID: 32809900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shorter Duration Time Trial Performance and Recovery Is Not Improved by Inclusion of Protein in a Multiple Carbohydrate Supplement.
    Wolfe AS; Brandt SA; Krause IA; Mavison RW; Aponte JA; Ferguson-Stegall LM
    J Strength Cond Res; 2017 Sep; 31(9):2509-2518. PubMed ID: 27930452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Intensified Endurance Training on Pacing and Performance in 4000-m Cycling Time Trials.
    Wallett AM; Woods AL; Versey N; Garvican-Lewis LA; Welvaert M; Thompson KG
    Int J Sports Physiol Perform; 2018 Jul; 13(6):735-741. PubMed ID: 29035591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cadence on Time Trial Performance in Recreational Female Cyclists.
    Graham PL; Zoeller RF; Jacobs PL; Whitehurst MA
    J Strength Cond Res; 2018 Jun; 32(6):1739-1744. PubMed ID: 29786630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological variables at lactate threshold under-represent cycling time-trial intensity.
    Kenefick RW; Mattern CO; Mahood NV; Quinn TJ
    J Sports Med Phys Fitness; 2002 Dec; 42(4):396-402. PubMed ID: 12391432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Threshold Power in Cyclists: Validity of the Concept and Physiological Responses.
    Borszcz FK; Tramontin AF; Bossi AH; Carminatti LJ; Costa VP
    Int J Sports Med; 2018 Oct; 39(10):737-742. PubMed ID: 29801189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceptability of power variation during a simulated hilly time trial.
    Atkinson G; Peacock O; Law M
    Int J Sports Med; 2007 Feb; 28(2):157-63. PubMed ID: 17133287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-pacing increases critical power and improves performance during severe-intensity exercise.
    Black MI; Jones AM; Bailey SJ; Vanhatalo A
    Appl Physiol Nutr Metab; 2015 Jul; 40(7):662-70. PubMed ID: 26088158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pacing Strategy in Short Cycling Time Trials.
    de Jong J; van der Meijden L; Hamby S; Suckow S; Dodge C; de Koning JJ; Foster C
    Int J Sports Physiol Perform; 2015 Nov; 10(8):1015-22. PubMed ID: 25756313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance.
    Doering TM; Fell JW; Leveritt MD; Desbrow B; Shing CM
    Int J Sport Nutr Exerc Metab; 2014 Feb; 24(1):90-7. PubMed ID: 23980239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of a 1-h endurance performance test in trained female cyclists.
    Bishop D
    Med Sci Sports Exerc; 1997 Apr; 29(4):554-9. PubMed ID: 9107640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical power is related to cycling time trial performance.
    Smith JC; Dangelmaier BS; Hill DW
    Int J Sports Med; 1999 Aug; 20(6):374-8. PubMed ID: 10496116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pacing Strategy During Simulated Mountain Bike Racing.
    Viana BF; Pires FO; Inoue A; Santos TM
    Int J Sports Physiol Perform; 2018 Feb; 13(2):208-213. PubMed ID: 28605210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of training-induced fatigue on pacing patterns in 40-km cycling time trials.
    Skorski S; Hammes D; Schwindling S; Veith S; Pfeiffer M; Ferrauti A; Kellmann M; Meyer T
    Med Sci Sports Exerc; 2015 Mar; 47(3):593-600. PubMed ID: 25003772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of steady-state versus stochastic exercise on subsequent cycling performance.
    Palmer GS; Noakes TD; Hawley JA
    Med Sci Sports Exerc; 1997 May; 29(5):684-7. PubMed ID: 9140907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise.
    Grossl T; de Lucas RD; de Souza KM; Guglielmo LG
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1047-53. PubMed ID: 22891876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pacing pattern in a 30-minute maximal cycling test.
    Chaffin ME; Berg K; Zuniga J; Hanumanthu VS
    J Strength Cond Res; 2008 Nov; 22(6):2011-7. PubMed ID: 18978608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.