These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28892680)

  • 1. Removal and recovery of acetic acid and two furans during sugar purification of simulated phenols-free biomass hydrolysates.
    Lee SC
    Bioresour Technol; 2017 Dec; 245(Pt A):116-122. PubMed ID: 28892680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.
    Lee SC; Park S
    Bioresour Technol; 2016 Sep; 216():661-8. PubMed ID: 27289057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of xylose in simulated hemicellulosic hydrolysates using a two-step emulsion liquid membrane process.
    Lee SC
    Bioresour Technol; 2014 Oct; 169():692-699. PubMed ID: 25108268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.
    Jeong SY; Trinh LT; Lee HJ; Lee JW
    Bioresour Technol; 2014; 152():444-9. PubMed ID: 24321607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of UV absorbance To monitor furans in dilute acid hydrolysates of biomass.
    Martinez A; Rodriguez ME; York SW; Preston JF; Ingram LO
    Biotechnol Prog; 2000; 16(4):637-41. PubMed ID: 10933839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption.
    Zhang Y; Li M; Wang Y; Ji X; Zhang L; Hou L
    Bioresour Technol; 2015 Dec; 197():276-83. PubMed ID: 26342339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal.
    Mechmech F; Chadjaa H; Rahni M; Marinova M; Ben Akacha N; Gargouri M
    Bioresour Technol; 2015 Sep; 192():287-95. PubMed ID: 26046428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.
    Carter B; Gilcrease PC; Menkhaus TJ
    Biotechnol Bioeng; 2011 Sep; 108(9):2046-52. PubMed ID: 21455937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.
    Lee SC
    Bioresour Technol; 2015 Sep; 192():340-5. PubMed ID: 26056774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous detoxification and bioethanol fermentation of furans-rich synthetic hydrolysate by digestate-based pyrochar.
    Sambusiti C; Monlau F; Antoniou N; Zabaniotou A; Barakat A
    J Environ Manage; 2016 Dec; 183(Pt 3):1026-1031. PubMed ID: 27692517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass.
    Sainio T; Turku I; Heinonen J
    Bioresour Technol; 2011 May; 102(10):6048-57. PubMed ID: 21441022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.
    Arslan Y; Eken-Saraçoğlu N
    Bioresour Technol; 2010 Nov; 101(22):8664-70. PubMed ID: 20599381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.
    Carter B; Squillace P; Gilcrease PC; Menkhaus TJ
    Biotechnol Bioeng; 2011 Sep; 108(9):2053-60. PubMed ID: 21455936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of polyacrylamide/polystyrene interpenetrating polymer networks and the effect of textural properties on adsorption performance of fermentation inhibitors from sugarcane bagasse hydrolysate.
    Chen XF; Zhang LQ; Xu WP; Wang C; Li HL; Xiong L; Zhang HR; Chen XD
    Bioresour Technol; 2020 Dec; 318():124053. PubMed ID: 32942092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.
    Gurram RN; Datta S; Lin YJ; Snyder SW; Menkhaus TJ
    Bioresour Technol; 2011 Sep; 102(17):7850-9. PubMed ID: 21683583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose.
    Nilsson A; Gorwa-Grauslund MF; Hahn-Hägerdal B; Lidén G
    Appl Environ Microbiol; 2005 Dec; 71(12):7866-71. PubMed ID: 16332761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.