BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28892697)

  • 1. Water sorption in pretreated grasses as a predictor of enzymatic hydrolysis yields.
    Williams DL; Crowe JD; Ong RG; Hodge DB
    Bioresour Technol; 2017 Dec; 245(Pt A):242-249. PubMed ID: 28892697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility.
    Zhao C; Ding W; Chen F; Cheng C; Shao Q
    Bioresour Technol; 2014 Mar; 155():34-40. PubMed ID: 24412921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.
    Crowe JD; Zarger RA; Hodge DB
    J Agric Food Chem; 2017 Oct; 65(39):8652-8662. PubMed ID: 28876068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of corn stover for sugar production with switchgrass-derived black liquor.
    Xu J; Zhang X; Cheng JJ
    Bioresour Technol; 2012 May; 111():255-60. PubMed ID: 22357289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing biomass recalcitrance via mild sodium carbonate pretreatment.
    Mirmohamadsadeghi S; Chen Z; Wan C
    Bioresour Technol; 2016 Jun; 209():386-90. PubMed ID: 26972025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonia Fiber Expansion (AFEX) Pretreatment of Lignocellulosic Biomass.
    Chundawat SPS; Pal RK; Zhao C; Campbell T; Teymouri F; Videto J; Nielson C; Wieferich B; Sousa L; Dale BE; Balan V; Chipkar S; Aguado J; Burke E; Ong RG
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32364543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover.
    Li C; Cheng G; Balan V; Kent MS; Ong M; Chundawat SP; Sousa Ld; Melnichenko YB; Dale BE; Simmons BA; Singh S
    Bioresour Technol; 2011 Jul; 102(13):6928-36. PubMed ID: 21531133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility.
    Chundawat SP; Venkatesh B; Dale BE
    Biotechnol Bioeng; 2007 Feb; 96(2):219-31. PubMed ID: 16903002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignocellulosic biomass pretreatment using AFEX.
    Balan V; Bals B; Chundawat SP; Marshall D; Dale BE
    Methods Mol Biol; 2009; 581():61-77. PubMed ID: 19768616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.
    Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB
    Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.
    Mathew AK; Parameshwaran B; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Jan; 199():13-20. PubMed ID: 26358144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments.
    Gao X; Kumar R; Singh S; Simmons BA; Balan V; Dale BE; Wyman CE
    Biotechnol Biofuels; 2014; 7():71. PubMed ID: 24910713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of initial particle size and densification on AFEX-pretreated biomass for ethanol production.
    Rijal B; Biersbach G; Gibbons WR; Pryor SW
    Appl Biochem Biotechnol; 2014 Sep; 174(2):845-54. PubMed ID: 25099377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes.
    Stoklosa RJ; Del Pilar Orjuela A; da Costa Sousa L; Uppugundla N; Williams DL; Dale BE; Hodge DB; Balan V
    Bioresour Technol; 2017 Feb; 226():9-17. PubMed ID: 27951509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses.
    Li J; Lu M; Guo X; Zhang H; Li Y; Han L
    Bioresour Technol; 2018 Oct; 265():1-7. PubMed ID: 29860078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Walton JD
    Biotechnol Biofuels; 2010 Oct; 3():22. PubMed ID: 20939889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis.
    Nakagame S; Chandra RP; Saddler JN
    Biotechnol Bioeng; 2010 Apr; 105(5):871-9. PubMed ID: 19998278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of dilute acid pretreatment conditions on p-coumarate removal in diverse maize lines.
    Saulnier BK; Phongpreecha T; Singh SK; Hodge DB
    Bioresour Technol; 2020 Oct; 314():123750. PubMed ID: 32622284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.