These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28892759)

  • 1. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.
    Gacitúa MA; Muñoz E; González B
    Bioelectrochemistry; 2018 Feb; 119():26-32. PubMed ID: 28892759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalysed sulphate removal in a BES cathode.
    Coma M; Puig S; Pous N; Balaguer MD; Colprim J
    Bioresour Technol; 2013 Feb; 130():218-23. PubMed ID: 23313666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of headspace composition on product diversity by sulphate reducing bacteria biocathode.
    Sharma M; Varanasi JL; Jain P; Dureja P; Lal B; Dominguez-Benetton X; Pant D; Sarma PM
    Bioresour Technol; 2014 Aug; 165():365-71. PubMed ID: 24726774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):89-92. PubMed ID: 678014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tannery effluent as a carbon source for biological sulphate reduction.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage.
    Sulonen MLK; Baeza JA; Gabriel D; Guisasola A
    J Hazard Mater; 2021 May; 409():124944. PubMed ID: 33422754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.
    Teng W; Liu G; Luo H; Zhang R; Xiang Y
    J Hazard Mater; 2016 Mar; 304():159-65. PubMed ID: 26561748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of influent COD/SO4(2-) ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties.
    O'Reilly C; Colleran E
    FEMS Microbiol Ecol; 2006 Apr; 56(1):141-53. PubMed ID: 16542412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors.
    Fedorovich V; Greben M; Kalyuzhnyi S; Lens P; Hulshoff Pol L
    Biodegradation; 2000; 11(5):295-303. PubMed ID: 11487059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.
    Pender S; Toomey M; Carton M; Eardly D; Patching JW; Colleran E; O'Flaherty V
    Water Res; 2004 Feb; 38(3):619-30. PubMed ID: 14723931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H(2) -producing capability of Desulfovibrio sp.
    Aulenta F; Catapano L; Snip L; Villano M; Majone M
    ChemSusChem; 2012 Jun; 5(6):1080-5. PubMed ID: 22581429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial sulphate reduction at a low pH.
    Koschorreck M
    FEMS Microbiol Ecol; 2008 Jun; 64(3):329-42. PubMed ID: 18445022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment.
    Abram JW; Nedwell DB
    Arch Microbiol; 1978 Apr; 117(1):93-7. PubMed ID: 678015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced sulfate reduction accompanied with electrically-conductive pili production in graphene oxide modified biocathodes.
    Hu J; Zeng C; Liu G; Lu Y; Zhang R; Luo H
    Bioresour Technol; 2019 Jun; 282():425-432. PubMed ID: 30889533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell.
    Croese E; Pereira MA; Euverink GJ; Stams AJ; Geelhoed JS
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1083-93. PubMed ID: 21983651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.