BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28892798)

  • 1. A novel method for the sequential removal and separation of multiple heavy metals from wastewater.
    Fang L; Li L; Qu Z; Xu H; Xu J; Yan N
    J Hazard Mater; 2018 Jan; 342():617-624. PubMed ID: 28892798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption.
    Hsu CJ; Xiao YZ; Chung A; Hsi HC
    Sci Total Environ; 2023 Jan; 855():158870. PubMed ID: 36155048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.
    Wang F; Lu X; Li XY
    J Hazard Mater; 2016 May; 308():75-83. PubMed ID: 26808245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange.
    Qu Z; Yan L; Li L; Xu J; Liu M; Li Z; Yan N
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18026-32. PubMed ID: 25299972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur.
    Liang L; Li X; Guo Y; Lin Z; Su X; Liu B
    J Hazard Mater; 2021 Feb; 404(Pt A):124057. PubMed ID: 33022528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber.
    Bediako JK; Wei W; Kim S; Yun YS
    J Hazard Mater; 2015 Dec; 299():550-61. PubMed ID: 26257295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS
    Wang Z; Zhang J; Wen T; Liu X; Wang Y; Yang H; Sun J; Feng J; Dong S; Sun J
    Sci Total Environ; 2020 Jan; 699():134341. PubMed ID: 31678874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and fate of selected heavy metals in a biological wastewater treatment system.
    Chipasa KB
    Waste Manag; 2003; 23(2):135-43. PubMed ID: 12623088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of insoluble heavy metal sulfides from water.
    Banfalvi G
    Chemosphere; 2006 May; 63(7):1231-4. PubMed ID: 16297963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of H
    Sun X; Ji L; Huang W; Li Z; Liao Y; Xiao K; Zhu X; Xu H; Feng J; Feng S; Qu Z; Yan N
    Environ Sci Technol; 2021 Mar; 55(6):3988-3995. PubMed ID: 33666416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of heavy metals (Zn, Cu, Pb, Cd and Cr) in an integrated wastewater treatment plant: two phase anaerobic reactor (RAP) - high rate algal pond (HRAP).
    Toumi A; Nejmeddine A; Belkoura M
    Environ Technol; 2003 Feb; 24(2):153-9. PubMed ID: 12666785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity-driven membrane system treating heavy metals-containing secondary effluent: Improved removal of heavy metals and mechanism.
    Ma X; Wang Y; Tong L; Luo J; Chen R; Wang Y; Guo X; Wang J; Zhou Z; Qi J; Li G; Liang H; Tang X
    Chemosphere; 2023 Oct; 339():139590. PubMed ID: 37480959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore-Based Strategy for Sequential Separation of Heavy-Metal Ions in Water.
    Liu L; Zhang K
    Environ Sci Technol; 2018 May; 52(10):5884-5891. PubMed ID: 29683317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for solidification/stabilization of Cd(II), Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag.
    Lan J; Dong Y; Sun Y; Fen L; Zhou M; Hou H; Du D
    J Hazard Mater; 2021 May; 409():124933. PubMed ID: 33418297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.