BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28892861)

  • 1. Assessment of the hazard of nine (doped) lanthanides-based ceramic oxides to four aquatic species.
    Blinova I; Vija H; Lukjanova A; Muna M; Syvertsen-Wiig G; Kahru A
    Sci Total Environ; 2018 Jan; 612():1171-1176. PubMed ID: 28892861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans.
    Blinova I; Lukjanova A; Muna M; Vija H; Kahru A
    Sci Total Environ; 2018 Nov; 642():1100-1107. PubMed ID: 30045491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang?
    Ippolito MP; Fasciano C; d'Aquino L; Morgana M; Tommasi F
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):42-52. PubMed ID: 19504227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands.
    Weltje L; Heidenreich H; Zhu W; Wolterbeek HT; Korhammer S; de Goeij JJ; Markert B
    Sci Total Environ; 2002 Mar; 286(1-3):191-214. PubMed ID: 11887873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of freshwater algae and duckweeds for phytotoxicity testing.
    Blinova I
    Environ Toxicol; 2004 Aug; 19(4):425-8. PubMed ID: 15269918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila.
    Kurvet I; Juganson K; Vija H; Sihtmäe M; Blinova I; Syvertsen-Wiig G; Kahru A
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.
    Joonas E; Aruoja V; Olli K; Syvertsen-Wiig G; Vija H; Kahru A
    Sci Total Environ; 2017 Sep; 593-594():478-486. PubMed ID: 28359999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic transfer of Cd from duckweed (Lemna minor L.) to tilapia (Oreochromis mossambicus).
    Xue Y; Peijnenburg WJGM; Huang J; Wang D; Jin Y
    Environ Toxicol Chem; 2018 May; 37(5):1367-1377. PubMed ID: 29315779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis.
    Okamura H; Togosmaa L; Sawamoto T; Fukushi K; Nishida T; Beppu T
    Ecotoxicology; 2012 May; 21(4):1102-11. PubMed ID: 22350106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry?
    Gonzalez V; Vignati DA; Leyval C; Giamberini L
    Environ Int; 2014 Oct; 71():148-57. PubMed ID: 25036616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO4(2-), Cl- , NO3-) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): implications For Ni risk assessment.
    Gopalapillai Y; Hale B; Vigneault B
    Environ Toxicol Chem; 2013 Apr; 32(4):810-21. PubMed ID: 23297250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution.
    Rodrigues AC; Jesus FT; Fernandes MA; Morgado F; Soares AM; Abreu SN
    Bull Environ Contam Toxicol; 2013 Aug; 91(2):191-6. PubMed ID: 23771310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments.
    Balusamy B; Taştan BE; Ergen SF; Uyar T; Tekinay T
    Environ Sci Process Impacts; 2015 Jul; 17(7):1265-70. PubMed ID: 26022751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bioassay using root re-growth in Lemna.
    Park A; Kim YJ; Choi EM; Brown MT; Han T
    Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological toxicity of lanthanide elements on algae.
    Tai P; Zhao Q; Su D; Li P; Stagnitti F
    Chemosphere; 2010 Aug; 80(9):1031-5. PubMed ID: 20547408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the toxic effects of mixtures of three lanthanides (Ce, Gd, Lu) to aquatic biota.
    Romero-Freire A; Joonas E; Muna M; Cossu-Leguille C; Vignati DAL; Giamberini L
    Sci Total Environ; 2019 Apr; 661():276-284. PubMed ID: 30677675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species.
    Dosnon-Olette R; Couderchet M; El Arfaoui A; Sayen S; Eullaffroy P
    Sci Total Environ; 2010 Apr; 408(10):2254-9. PubMed ID: 20156640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation.
    Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H
    Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of wood leachate to algae Desmodesmus subspicatus and plant Lemna minor.
    Sackey LNA; Mocová KA; Petrová Š; Kočí V
    Environ Sci Pollut Res Int; 2021 Dec; 28(47):67150-67158. PubMed ID: 34247352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.
    Gopalapillai Y; Vigneault B; Hale BA
    Integr Environ Assess Manag; 2014 Oct; 10(4):493-7. PubMed ID: 25045146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.