These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28892862)

  • 41. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe
    Bombuwala Dewage N; Liyanage AS; Pittman CU; Mohan D; Mlsna T
    Bioresour Technol; 2018 Sep; 263():258-265. PubMed ID: 29753258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution.
    Shang H; Li Y; Liu J; Wan Y; Feng Y; Yu Y
    Bioresour Technol; 2020 Oct; 314():123708. PubMed ID: 32599530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arsenate and arsenite adsorption onto iron-coated cork granulates.
    Pintor AMA; Vieira BRC; Santos SCR; Boaventura RAR; Botelho CMS
    Sci Total Environ; 2018 Nov; 642():1075-1089. PubMed ID: 30045489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sustainable Zn
    Sopanrao KS; Sreedhar I
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38771536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of iron oxyhydroxide-coated rice straw (IOC-RS) and its application in arsenic(V) removal from water.
    Ouédraogo IW; Pehlivan E; Tran HT; Bonzi-Coulibaly YL; Zachmann D; Bahadir M
    J Water Health; 2015 Sep; 13(3):726-36. PubMed ID: 26322758
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic acid].
    Ding WC; Tian XM; Wang DY; Zeng XL; Xu Q; Chen JK; Ai XY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3847-53. PubMed ID: 23323415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.
    Fan FL; Qin Z; Bai J; Rong WD; Fan FY; Tian W; Wu XL; Wang Y; Zhao L
    J Environ Radioact; 2012 Apr; 106():40-6. PubMed ID: 22304999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous biochar composite assembled with ternary needle-like iron-manganese-sulphur hybrids for high-efficiency lead removal.
    Yang F; Zhang S; Cho DW; Du Q; Song J; Tsang DCW
    Bioresour Technol; 2019 Jan; 272():415-420. PubMed ID: 30388579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption and regeneration on iron-activated biochar for removal of microcystin-LR.
    Zeng S; Kan E
    Chemosphere; 2021 Jun; 273():129649. PubMed ID: 33497982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal.
    Tang J; Huang Y; Gong Y; Lyu H; Wang Q; Ma J
    J Hazard Mater; 2016 Oct; 316():151-8. PubMed ID: 27232726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.
    Sahabi DM; Takeda M; Suzuki I; Koizumi J
    J Hazard Mater; 2009 Sep; 168(2-3):1310-8. PubMed ID: 19346074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoporous ball-milling iron-loaded biochar for enhanced sorption of reactive red: Performance and mechanisms.
    Feng K; Xu Z; Gao B; Xu X; Zhao L; Qiu H; Cao X
    Environ Pollut; 2021 Dec; 290():117992. PubMed ID: 34418859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of a novel magnetic
    Cui Q; Jiao G; Zheng J; Wang T; Wu G; Li G
    RSC Adv; 2019 Jun; 9(32):18641-18651. PubMed ID: 35515233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing.
    Dong X; Ma LQ; Li Y
    J Hazard Mater; 2011 Jun; 190(1-3):909-15. PubMed ID: 21550718
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of Arsenic by Wheat Straw Biochar from Soil.
    Kumar A; Bhattacharya T
    Bull Environ Contam Toxicol; 2022 Mar; 108(3):415-422. PubMed ID: 33420803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II).
    Ge Y; Zhu S; Wang K; Liu F; Zhang S; Wang R; Ho SH; Chang JS
    J Hazard Mater; 2024 May; 469():133991. PubMed ID: 38492405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic immobilization through regulated ferrolysis in paddy field amendment with bismuth impregnated biochar.
    Zhu N; Qiao J; Yan T
    Sci Total Environ; 2019 Jan; 648():993-1001. PubMed ID: 30340311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.