These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28893067)

  • 21. Electrokinetic translocation of a deformable nanoparticle controlled by field effect in nanopores.
    He X; Wang P; Shi L; Zhou T; Wen L
    Electrophoresis; 2021 Nov; 42(21-22):2197-2205. PubMed ID: 34409625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
    Sischka A; Galla L; Meyer AJ; Spiering A; Knust S; Mayer M; Hall AR; Beyer A; Reimann P; Gölzhäuser A; Anselmetti D
    Analyst; 2015 Jul; 140(14):4843-7. PubMed ID: 25768647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interpreting the conductance blockades of DNA translocations through solid-state nanopores.
    Carlsen AT; Zahid OK; Ruzicka J; Taylor EW; Hall AR
    ACS Nano; 2014 May; 8(5):4754-60. PubMed ID: 24758739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA nanopore translocation in glutamate solutions.
    Plesa C; van Loo N; Dekker C
    Nanoscale; 2015 Aug; 7(32):13605-9. PubMed ID: 26206066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions.
    Lin Y; Ying YL; Gao R; Long YT
    Chemistry; 2018 Sep; 24(50):13064-13071. PubMed ID: 29577444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps.
    Chen K; Muthukumar M
    ACS Nano; 2023 May; 17(10):9197-9208. PubMed ID: 37146154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.
    Liu L; Li C; Ma J; Wu Y; Ni Z; Chen Y
    IET Nanobiotechnol; 2014 Dec; 8(4):247-56. PubMed ID: 25429504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate.
    Zhao S; Restrepo-Pérez L; Soskine M; Maglia G; Joo C; Dekker C; Aksimentiev A
    ACS Nano; 2019 Feb; 13(2):2398-2409. PubMed ID: 30715850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level.
    Tan CS; Fleming AM; Ren H; Burrows CJ; White HS
    J Am Chem Soc; 2018 Oct; 140(43):14224-14234. PubMed ID: 30269492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA Nanopore-Tethered Gold Needle Electrodes for Channel Current Recording.
    Ikarashi S; Akai H; Koiwa H; Izawa Y; Takahashi J; Mabuchi T; Shoji K
    ACS Nano; 2023 Jun; 17(11):10598-10607. PubMed ID: 37222595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically Tunable Quenching of DNA Fluctuations in Biased Solid-State Nanopores.
    Qiu H; Girdhar A; Schulten K; Leburton JP
    ACS Nano; 2016 Apr; 10(4):4482-8. PubMed ID: 26998639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrokinetic particle translocation through a nanopore containing a floating electrode.
    Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S
    Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore.
    Mojtabavi M; Greive SJ; Antson AA; Wanunu M
    J Am Chem Soc; 2022 Dec; 144(49):22540-22548. PubMed ID: 36455212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore.
    Yamazaki H; Mizuguchi T; Esashika K; Saiki T
    Analyst; 2019 Sep; 144(18):5381-5388. PubMed ID: 31463499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule.
    Kurz V; Nelson EM; Shim J; Timp G
    ACS Nano; 2013 May; 7(5):4057-69. PubMed ID: 23607372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanopore sequencing technology: nanopore preparations.
    Rhee M; Burns MA
    Trends Biotechnol; 2007 Apr; 25(4):174-81. PubMed ID: 17320228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.