BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28893107)

  • 1. Applying proteomics to diagnosis of diabetic kidney disease.
    Moresco RN; De Carvalho JAM
    Expert Rev Proteomics; 2017 Oct; 14(10):841-843. PubMed ID: 28893107
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolomic and Proteomic Techniques for Establishing Biomarkers and Improving Our Understanding of Pathophysiology in Diabetic Nephropathy.
    Siwy J; Ahonen L; Magalhães P; Frantzi M; Rossing P
    Methods Mol Biol; 2020; 2067():287-306. PubMed ID: 31701458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease.
    Pena MJ; Mischak H; Heerspink HJ
    Diabetologia; 2016 Sep; 59(9):1819-31. PubMed ID: 27344310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of urinary and serum hepatocyte growth factor assay as an early marker of diabetic nephropathy.
    Ebihara I; Nakamura T; Ushiyama C; Suzuki S; Koide H
    Nephron; 1999; 82(4):365. PubMed ID: 10450045
    [No Abstract]   [Full Text] [Related]  

  • 5. Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases.
    Filip S; Pontillo C; Peter Schanstra J; Vlahou A; Mischak H; Klein J
    Expert Rev Proteomics; 2014 Oct; 11(5):535-48. PubMed ID: 24957818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for proteomics in kidney stone disease.
    Vinaiphat A; Thongboonkerd V
    Expert Rev Proteomics; 2017 Mar; 14(3):185-187. PubMed ID: 28092479
    [No Abstract]   [Full Text] [Related]  

  • 7. Utility of serum and urinary transforming growth factor-beta levels as markers of diabetic nephropathy.
    Mogyorósi A; Kapoor A; Isono M; Kapoor S; Sharma K; Ziyadeh FN
    Nephron; 2000 Oct; 86(2):234-5. PubMed ID: 11015017
    [No Abstract]   [Full Text] [Related]  

  • 8. Biomarkers that predict diabetic nephropathy: the long road from finding targets to clinical use.
    Klein J
    Diabetes; 2012 Dec; 61(12):3072-3. PubMed ID: 23172957
    [No Abstract]   [Full Text] [Related]  

  • 9. Body fluid peptide and protein signatures in diabetic kidney diseases.
    Jankowski J; Schanstra JP; Mischak H
    Nephrol Dial Transplant; 2015 Aug; 30 Suppl 4():iv43-53. PubMed ID: 26209737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of urinary proteomic patterns for type 2 diabetic nephropathy by ProteinChip.
    Wu J; Chen YD; Yu JK; Shi XL; Gu W
    Diabetes Res Clin Pract; 2011 Feb; 91(2):213-9. PubMed ID: 21237525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-albumininuric proteinuria: a urinary tubular marker in the diagnosis of diabetic kidney disease.
    De Carvalho JA; Tatsch E; Hausen BS; Londero SW; Comim FV; Moresco RN
    Clin Chem Lab Med; 2016 Mar; 54(3):e85-8. PubMed ID: 26402882
    [No Abstract]   [Full Text] [Related]  

  • 12. Decreased plasma α-Klotho predict progression of nephropathy with type 2 diabetic patients.
    Kim SS; Song SH; Kim IJ; Lee EY; Lee SM; Chung CH; Kwak IS; Lee EK; Kim YK
    J Diabetes Complications; 2016 Jul; 30(5):887-92. PubMed ID: 27037042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes.
    Zubiri I; Posada-Ayala M; Benito-Martin A; Maroto AS; Martin-Lorenzo M; Cannata-Ortiz P; de la Cuesta F; Gonzalez-Calero L; Barderas MG; Fernandez-Fernandez B; Ortiz A; Vivanco F; Alvarez-Llamas G
    Transl Res; 2015 Nov; 166(5):474-484.e4. PubMed ID: 26072307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine.
    Gronwald W; Klein MS; Zeltner R; Schulze BD; Reinhold SW; Deutschmann M; Immervoll AK; Böger CA; Banas B; Eckardt KU; Oefner PJ
    Kidney Int; 2011 Jun; 79(11):1244-53. PubMed ID: 21389975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urinary proteomics for the study of genetic kidney diseases.
    Raimondo F; Cerra D; Magni F; Pitto M
    Expert Rev Proteomics; 2016; 13(3):309-24. PubMed ID: 26698090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis.
    Ioannou K
    Hormones (Athens); 2017 Oct; 16(4):351-361. PubMed ID: 29518755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary proteomics in the assessment of chronic kidney disease.
    Mullen W; Delles C; Mischak H;
    Curr Opin Nephrol Hypertens; 2011 Nov; 20(6):654-61. PubMed ID: 21885967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urine as a source for clinical proteome analysis: from discovery to clinical application.
    Rodríguez-Suárez E; Siwy J; Zürbig P; Mischak H
    Biochim Biophys Acta; 2014 May; 1844(5):884-98. PubMed ID: 23831154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Diabetic Kidney Disease Using Urinary Proteomics and Bioinformatics.
    Van JA; Scholey JW; Konvalinka A
    J Am Soc Nephrol; 2017 Apr; 28(4):1050-1061. PubMed ID: 28159781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum and Urinary Progranulin in Diabetic Kidney Disease.
    Nicoletto BB; Krolikowski TC; Crispim D; Canani LH
    PLoS One; 2016; 11(10):e0165177. PubMed ID: 27776152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.