These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28893361)

  • 1. Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery.
    Moynihan PJ; Besra GS
    Microbiology (Reading); 2017 Oct; 163(10):1385-1388. PubMed ID: 28893361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH; Smith PW
    Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies to Combat Multi-Drug Resistance in Tuberculosis.
    Singh V; Chibale K
    Acc Chem Res; 2021 May; 54(10):2361-2376. PubMed ID: 33886255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons from seven decades of antituberculosis drug discovery.
    Barry CE
    Curr Top Med Chem; 2011; 11(10):1216-25. PubMed ID: 21401509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the research of heterocyclic compounds as antitubercular agents.
    Yan M; Ma S
    ChemMedChem; 2012 Dec; 7(12):2063-75. PubMed ID: 23042656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. M. tuberculosis genotypic diversity and drug susceptibility pattern in HIV-infected and non-HIV-infected patients in northern Tanzania.
    Kibiki GS; Mulder B; Dolmans WM; de Beer JL; Boeree M; Sam N; van Soolingen D; Sola C; van der Zanden AG
    BMC Microbiol; 2007 May; 7():51. PubMed ID: 17540031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.
    Bhat ZS; Rather MA; Maqbool M; Ahmad Z
    Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunometabolism during Mycobacterium tuberculosis Infection.
    Howard NC; Khader SA
    Trends Microbiol; 2020 Oct; 28(10):832-850. PubMed ID: 32409147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent updates on drug resistance in Mycobacterium tuberculosis.
    Singh R; Dwivedi SP; Gaharwar US; Meena R; Rajamani P; Prasad T
    J Appl Microbiol; 2020 Jun; 128(6):1547-1567. PubMed ID: 31595643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3.
    Remuiñán MJ; Pérez-Herrán E; Rullás J; Alemparte C; Martínez-Hoyos M; Dow DJ; Afari J; Mehta N; Esquivias J; Jiménez E; Ortega-Muro F; Fraile-Gabaldón MT; Spivey VL; Loman NJ; Pallen MJ; Constantinidou C; Minick DJ; Cacho M; Rebollo-López MJ; González C; Sousa V; Angulo-Barturen I; Mendoza-Losana A; Barros D; Besra GS; Ballell L; Cammack N
    PLoS One; 2013; 8(4):e60933. PubMed ID: 23613759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoniazid resistance without a loss of fitness in Mycobacterium tuberculosis.
    Lee JH; Ammerman NC; Nolan S; Geiman DE; Lun S; Guo H; Bishai WR
    Nat Commun; 2012 Mar; 3():753. PubMed ID: 22434196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis.
    John SF; Aniemeke E; Ha NP; Chong CR; Gu P; Zhou J; Zhang Y; Graviss EA; Liu JO; Olaleye OA
    Tuberculosis (Edinb); 2016 Dec; 101S():S73-S77. PubMed ID: 27856197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents.
    Yan M; Xu L; Wang Y; Wan J; Liu T; Liu W; Wan Y; Zhang B; Wang R; Li Q
    Drug Dev Res; 2020 Jun; 81(4):402-418. PubMed ID: 31904877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel targets in M. tuberculosis: search for new drugs.
    Lamichhane G
    Trends Mol Med; 2011 Jan; 17(1):25-33. PubMed ID: 21071272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics-directed drug discovery for combating Mycobacterium tuberculosis infection.
    Quan Y; Xiong L; Chen J; Zhang HY
    J Biomol Struct Dyn; 2017 Feb; 35(3):616-621. PubMed ID: 26900080
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.