BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28893366)

  • 1. Fidaxomicin reduces early toxin A and B production and sporulation in Clostridium difficilein vitro.
    Aldape MJ; Packham AE; Heeney DD; Rice SN; Bryant AE; Stevens DL
    J Med Microbiol; 2017 Oct; 66(10):1393-1399. PubMed ID: 28893366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-lethal doses of surotomycin and vancomycin have similar effects on Clostridium difficile virulence factor production in vitro.
    Aldape MJ; Rice SN; Field KP; Bryant AE; Stevens DL
    J Med Microbiol; 2018 Dec; 67(12):1689-1697. PubMed ID: 30307842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fidaxomicin inhibits spore production in Clostridium difficile.
    Babakhani F; Bouillaut L; Gomez A; Sears P; Nguyen L; Sonenshein AL
    Clin Infect Dis; 2012 Aug; 55 Suppl 2(Suppl 2):S162-9. PubMed ID: 22752866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fidaxomicin inhibits toxin production in Clostridium difficile.
    Babakhani F; Bouillaut L; Sears P; Sims C; Gomez A; Sonenshein AL
    J Antimicrob Chemother; 2013 Mar; 68(3):515-22. PubMed ID: 23208832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile.
    Aldape MJ; Heeney DD; Bryant AE; Stevens DL
    J Antimicrob Chemother; 2015 Jan; 70(1):153-9. PubMed ID: 25151204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production.
    Chilton CH; Crowther GS; Ashwin H; Longshaw CM; Wilcox MH
    PLoS One; 2016; 11(8):e0161200. PubMed ID: 27556739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile.
    Pellissery AJ; Vinayamohan PG; Yin HB; Mooyottu S; Venkitanarayanan K
    J Med Microbiol; 2019 Jul; 68(7):1118-1128. PubMed ID: 31172910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High in vitro activity of fidaxomicin against Clostridium difficile isolates from a university teaching hospital in China.
    Cheng JW; Yang QW; Xiao M; Yu SY; Zhou ML; Kudinha T; Kong F; Liao JW; Xu YC
    J Microbiol Immunol Infect; 2018 Jun; 51(3):411-416. PubMed ID: 28693926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fidaxomicin for the treatment of Clostridium difficile infections.
    Whitman CB; Czosnowski QA
    Ann Pharmacother; 2012 Feb; 46(2):219-28. PubMed ID: 22318930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study to assess bacterial and toxin reduction in patients with Clostridium difficile infection given fidaxomicin or vancomycin.
    Thabit AK; Alam MJ; Khaleduzzaman M; Garey KW; Nicolau DP
    Ann Clin Microbiol Antimicrob; 2016 Apr; 15():22. PubMed ID: 27071986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of Clostridium difficile.
    Skinner K; Birchall S; Corbett D; Thommes P; Locher HH
    J Med Microbiol; 2018 Sep; 67(9):1402-1409. PubMed ID: 30052178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Antimicrobial profile and clinical evidence of fidaxomicin (Dafclir
    Takeda S; Miki T
    Nihon Yakurigaku Zasshi; 2019; 154(4):217-229. PubMed ID: 31597902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidaxomicin: a novel macrocyclic antibiotic for the treatment of Clostridium difficile infection.
    Crawford T; Huesgen E; Danziger L
    Am J Health Syst Pharm; 2012 Jun; 69(11):933-43. PubMed ID: 22610025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subinhibitory concentrations of LFF571 reduce toxin production by Clostridium difficile.
    Sachdeva M; Leeds JA
    Antimicrob Agents Chemother; 2015 Feb; 59(2):1252-7. PubMed ID: 25512411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model.
    Ochsner UA; Bell SJ; O'Leary AL; Hoang T; Stone KC; Young CL; Critchley IA; Janjic N
    J Antimicrob Chemother; 2009 May; 63(5):964-71. PubMed ID: 19251726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium difficile and the disease it causes.
    Norén T
    Methods Mol Biol; 2010; 646():9-35. PubMed ID: 20597000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. U.S.-Based National Sentinel Surveillance Study for the Epidemiology of Clostridium difficile-Associated Diarrheal Isolates and Their Susceptibility to Fidaxomicin.
    Snydman DR; McDermott LA; Jacobus NV; Thorpe C; Stone S; Jenkins SG; Goldstein EJ; Patel R; Forbes BA; Mirrett S; Johnson S; Gerding DN
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6437-43. PubMed ID: 26239985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment.
    James GA; Chesnel L; Boegli L; deLancey Pulcini E; Fisher S; Stewart PS
    J Antimicrob Chemother; 2018 Jan; 73(1):102-108. PubMed ID: 29029221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sub-MIC concentrations of metronidazole, vancomycin, clindamycin and linezolid on toxin gene transcription and production in Clostridium difficile.
    Gerber M; Walch C; Löffler B; Tischendorf K; Reischl U; Ackermann G
    J Med Microbiol; 2008 Jun; 57(Pt 6):776-783. PubMed ID: 18480337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.