BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28893416)

  • 1. NMR studies of the non-haem Fe(II) and 2-oxoglutarate-dependent oxygenases.
    Mbenza NM; Vadakkedath PG; McGillivray DJ; Leung IKH
    J Inorg Biochem; 2017 Dec; 177():384-394. PubMed ID: 28893416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors.
    Leung IK; Demetriades M; Hardy AP; Lejeune C; Smart TJ; Szöllössi A; Kawamura A; Schofield CJ; Claridge TD
    J Med Chem; 2013 Jan; 56(2):547-55. PubMed ID: 23234607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa.
    Jia B; Tang K; Chun BH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2922-2933. PubMed ID: 28847508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.
    Jia B; Jia X; Kim KH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):323-334. PubMed ID: 27919802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of 2-oxoglutarate dependent oxygenases.
    Rose NR; McDonough MA; King ON; Kawamura A; Schofield CJ
    Chem Soc Rev; 2011 Aug; 40(8):4364-97. PubMed ID: 21390379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in protein dynamics of the DNA repair dioxygenase AlkB upon binding of Fe(2+) and 2-oxoglutarate.
    Bleijlevens B; Shivarattan T; van den Boom KS; de Haan A; van der Zwan G; Simpson PJ; Matthews SJ
    Biochemistry; 2012 Apr; 51(16):3334-41. PubMed ID: 22443471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling.
    Hewitson KS; Granatino N; Welford RW; McDonough MA; Schofield CJ
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):807-28; discussion 1035-40. PubMed ID: 15901537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB.
    Ergel B; Gill ML; Brown L; Yu B; Palmer AG; Hunt JF
    J Biol Chem; 2014 Oct; 289(43):29584-601. PubMed ID: 25043760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements.
    Zhang Z; Ren Js; Harlos K; McKinnon CH; Clifton IJ; Schofield CJ
    FEBS Lett; 2002 Apr; 517(1-3):7-12. PubMed ID: 12062399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and functional analysis of YcfD, a novel 2-oxoglutarate/Fe²⁺-dependent oxygenase involved in translational regulation in Escherichia coli.
    van Staalduinen LM; Novakowski SK; Jia Z
    J Mol Biol; 2014 May; 426(9):1898-910. PubMed ID: 24530688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic states of the DNA repair enzyme AlkB regulate product release.
    Bleijlevens B; Shivarattan T; Flashman E; Yang Y; Simpson PJ; Koivisto P; Sedgwick B; Schofield CJ; Matthews SJ
    EMBO Rep; 2008 Sep; 9(9):872-7. PubMed ID: 18617893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Origin of the Large Redox-Linked Reorganization in the 2-Oxoglutarate Dependent Oxygenase, TauD.
    John CW; Hausinger RP; Proshlyakov DA
    J Am Chem Soc; 2019 Sep; 141(38):15318-15326. PubMed ID: 31475523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis.
    Rabe P; Kamps JJAG; Schofield CJ; Lohans CT
    Nat Prod Rep; 2018 Aug; 35(8):735-756. PubMed ID: 29808887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases.
    Tarhonskaya H; Szöllössi A; Leung IK; Bush JT; Henry L; Chowdhury R; Iqbal A; Claridge TD; Schofield CJ; Flashman E
    Biochemistry; 2014 Apr; 53(15):2483-93. PubMed ID: 24684493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase.
    Zhang Z; Ren J; Stammers DK; Baldwin JE; Harlos K; Schofield CJ
    Nat Struct Biol; 2000 Feb; 7(2):127-33. PubMed ID: 10655615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease.
    McDonough MA; Kavanagh KL; Butler D; Searls T; Oppermann U; Schofield CJ
    J Biol Chem; 2005 Dec; 280(49):41101-10. PubMed ID: 16186124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Iron(IV)-Oxo Intermediate Initiating l-Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme.
    Copeland RA; Davis KM; Shoda TKC; Blaesi EJ; Boal AK; Krebs C; Bollinger JM
    J Am Chem Soc; 2021 Feb; 143(5):2293-2303. PubMed ID: 33522811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators.
    Fletcher SC; Coleman ML
    Biochem Soc Trans; 2020 Oct; 48(5):1843-1858. PubMed ID: 32985654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on the application of DNA aptamers as inhibitors of 2-oxoglutarate-dependent oxygenases.
    Krylova SM; Koshkin V; Bagg E; Schofield CJ; Krylov SN
    J Med Chem; 2012 Apr; 55(7):3546-52. PubMed ID: 22471443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.