These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28893422)

  • 21. And yet it moves: Recovery of volitional control after spinal cord injury.
    Taccola G; Sayenko D; Gad P; Gerasimenko Y; Edgerton VR
    Prog Neurobiol; 2018 Jan; 160():64-81. PubMed ID: 29102670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathways mediating functional recovery.
    Baker SN; Zaaimi B; Fisher KM; Edgley SA; Soteropoulos DS
    Prog Brain Res; 2015; 218():389-412. PubMed ID: 25890147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced functional recovery by delaying motor training after spinal cord injury.
    Norrie BA; Nevett-Duchcherer JM; Gorassini MA
    J Neurophysiol; 2005 Jul; 94(1):255-64. PubMed ID: 15985696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys.
    Suzuki M; Onoe K; Sawada M; Takahashi N; Higo N; Murata Y; Tsukada H; Isa T; Onoe H; Nishimura Y
    Cereb Cortex; 2020 May; 30(5):3259-3270. PubMed ID: 31813974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Direct vs. Indirect Pathways from the Motor Cortex to Spinal Motoneurons in the Control of Hand Dexterity.
    Isa T; Kinoshita M; Nishimura Y
    Front Neurol; 2013 Nov; 4():191. PubMed ID: 24312077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity.
    Bradley PM; Denecke CK; Aljovic A; Schmalz A; Kerschensteiner M; Bareyre FM
    J Exp Med; 2019 Nov; 216(11):2503-2514. PubMed ID: 31391209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury.
    Courtine G; Song B; Roy RR; Zhong H; Herrmann JE; Ao Y; Qi J; Edgerton VR; Sofroniew MV
    Nat Med; 2008 Jan; 14(1):69-74. PubMed ID: 18157143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progressive plastic changes in the hand representation of the primary motor cortex parallel incomplete recovery from a unilateral section of the corticospinal tract at cervical level in monkeys.
    Schmidlin E; Wannier T; Bloch J; Rouiller EM
    Brain Res; 2004 Aug; 1017(1-2):172-83. PubMed ID: 15261113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury.
    Ueno M; Hayano Y; Nakagawa H; Yamashita T
    Brain; 2012 Apr; 135(Pt 4):1253-67. PubMed ID: 22436236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury.
    Kim JE; Liu BP; Park JH; Strittmatter SM
    Neuron; 2004 Oct; 44(3):439-51. PubMed ID: 15504325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat.
    López-Vales R; Forés J; Navarro X; Verdú E
    Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury.
    Conta AC; Stelzner DJ
    J Comp Neurol; 2004 Nov; 479(4):347-59. PubMed ID: 15514981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal cord maturation and locomotion in mice with an isolated cortex.
    Han Q; Feng J; Qu Y; Ding Y; Wang M; So KF; Wu W; Zhou L
    Neuroscience; 2013 Dec; 253():235-44. PubMed ID: 24012835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rehabilitative training and plasticity following spinal cord injury.
    Fouad K; Tetzlaff W
    Exp Neurol; 2012 May; 235(1):91-9. PubMed ID: 21333646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Reconsidering somatotopy with respect to functional recovery from spinal cord injury].
    Isa T
    Brain Nerve; 2009 Dec; 61(12):1405-11. PubMed ID: 20034307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.