These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 28893905)
1. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells. Gil J; Ramírez-Torres A; Chiappe D; Luna-Peñaloza J; Fernandez-Reyes FC; Arcos-Encarnación B; Contreras S; Encarnación-Guevara S J Biol Chem; 2017 Nov; 292(44):18129-18144. PubMed ID: 28893905 [TBL] [Abstract][Full Text] [Related]
2. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3'-end processing. Shimazu T; Horinouchi S; Yoshida M J Biol Chem; 2007 Feb; 282(7):4470-4478. PubMed ID: 17172643 [TBL] [Abstract][Full Text] [Related]
3. Acetylome study in mouse adipocytes identifies targets of SIRT1 deacetylation in chromatin organization and RNA processing. Kim SY; Sim CK; Tang H; Han W; Zhang K; Xu F Arch Biochem Biophys; 2016 May; 598():1-10. PubMed ID: 27021582 [TBL] [Abstract][Full Text] [Related]
4. Aromatase Acetylation Patterns and Altered Activity in Response to Sirtuin Inhibition. Molehin D; Castro-Piedras I; Sharma M; Sennoune SR; Arena D; Manna PR; Pruitt K Mol Cancer Res; 2018 Oct; 16(10):1530-1542. PubMed ID: 29921733 [TBL] [Abstract][Full Text] [Related]
5. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Hubbard BP; Loh C; Gomes AP; Li J; Lu Q; Doyle TL; Disch JS; Armour SM; Ellis JL; Vlasuk GP; Sinclair DA Cell Cycle; 2013 Jul; 12(14):2233-40. PubMed ID: 23892437 [TBL] [Abstract][Full Text] [Related]
6. Acetylome Analysis Identifies SIRT1 Targets in mRNA-Processing and Chromatin-Remodeling in Mouse Liver. Kim SY; Sim CK; Tang H; Han W; Zhang K; Xu F PLoS One; 2015; 10(10):e0140619. PubMed ID: 26468954 [TBL] [Abstract][Full Text] [Related]
7. TSC2 N-terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy. García-Aguilar A; Guillén C; Nellist M; Bartolomé A; Benito M Biochim Biophys Acta; 2016 Nov; 1863(11):2658-2667. PubMed ID: 27542907 [TBL] [Abstract][Full Text] [Related]
8. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Xu Q; Liu Q; Chen Z; Yue Y; Liu Y; Zhao Y; Zhou DX Nucleic Acids Res; 2021 May; 49(8):4613-4628. PubMed ID: 33836077 [TBL] [Abstract][Full Text] [Related]
9. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Chen Y; Zhao W; Yang JS; Cheng Z; Luo H; Lu Z; Tan M; Gu W; Zhao Y Mol Cell Proteomics; 2012 Oct; 11(10):1048-62. PubMed ID: 22826441 [TBL] [Abstract][Full Text] [Related]
10. Abnormal acetylation of FOXP3 regulated by SIRT-1 induces Treg functional deficiency in patients with abdominal aortic aneurysms. Jiang H; Xin S; Yan Y; Lun Y; Yang X; Zhang J Atherosclerosis; 2018 Apr; 271():182-192. PubMed ID: 29524861 [TBL] [Abstract][Full Text] [Related]
11. Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability. Yang L; Song T; Chen L; Kabra N; Zheng H; Koomen J; Seto E; Chen J Mol Cell Biol; 2013 Oct; 33(19):3835-48. PubMed ID: 23897426 [TBL] [Abstract][Full Text] [Related]
12. A role for c-Myc in the regulation of ribosomal RNA processing. Schlosser I; Hölzel M; Mürnseer M; Burtscher H; Weidle UH; Eick D Nucleic Acids Res; 2003 Nov; 31(21):6148-56. PubMed ID: 14576301 [TBL] [Abstract][Full Text] [Related]
13. SIRT 1 binding with PKM and NSE and modulate their acetylation and activities. Zhang ZH; Zhang H; Wang YR; Liu XL; Huang H; Xu XH Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):794-801. PubMed ID: 31202897 [TBL] [Abstract][Full Text] [Related]
14. Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing. Chen X; Lu L; Qian S; Scalf M; Smith LM; Zhong X Plant Cell; 2018 Jan; 30(1):134-152. PubMed ID: 29343504 [TBL] [Abstract][Full Text] [Related]
16. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Peng L; Yuan Z; Ling H; Fukasawa K; Robertson K; Olashaw N; Koomen J; Chen J; Lane WS; Seto E Mol Cell Biol; 2011 Dec; 31(23):4720-34. PubMed ID: 21947282 [TBL] [Abstract][Full Text] [Related]
17. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Hansen BK; Gupta R; Baldus L; Lyon D; Narita T; Lammers M; Choudhary C; Weinert BT Nat Commun; 2019 Mar; 10(1):1055. PubMed ID: 30837475 [TBL] [Abstract][Full Text] [Related]
18. Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide. Hajji N; Wallenborg K; Vlachos P; Füllgrabe J; Hermanson O; Joseph B Oncogene; 2010 Apr; 29(15):2192-204. PubMed ID: 20118981 [TBL] [Abstract][Full Text] [Related]
19. Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics. Dong J; He J; Zhang Z; Zhang W; Li Y; Li D; Xie H; Zuo W; Tang J; Zeng Z; Cai W; Lai L; Yun M; Shen L; Yin L; Tang D; Dai Y J Proteomics; 2022 Jun; 262():104598. PubMed ID: 35489685 [TBL] [Abstract][Full Text] [Related]
20. Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Yang Y; Li Z; Guo J; Xu Y Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165723. PubMed ID: 32061777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]