These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28893909)

  • 1. Processive searching ability varies among members of the gap-filling DNA polymerase X family.
    Howard MJ; Wilson SH
    J Biol Chem; 2017 Oct; 292(42):17473-17481. PubMed ID: 28893909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerase β uses its lyase domain in a processive search for DNA damage.
    Howard MJ; Rodriguez Y; Wilson SH
    Nucleic Acids Res; 2017 Apr; 45(7):3822-3832. PubMed ID: 28119421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysines in the lyase active site of DNA polymerase β destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition.
    Howard MJ; Horton JK; Zhao ML; Wilson SH
    J Biol Chem; 2020 Aug; 295(34):12181-12187. PubMed ID: 32647014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential role for polymerase specialization in cellular nonhomologous end joining.
    Pryor JM; Waters CA; Aza A; Asagoshi K; Strom C; Mieczkowski PA; Blanco L; Ramsden DA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4537-45. PubMed ID: 26240371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 20 years of DNA Polymerase μ, the polymerase that still surprises.
    Ghosh D; Raghavan SC
    FEBS J; 2021 Dec; 288(24):7230-7242. PubMed ID: 33786971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creative template-dependent synthesis by human polymerase mu.
    Moon AF; Gosavi RA; Kunkel TA; Pedersen LC; Bebenek K
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4530-6. PubMed ID: 26240373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of BRCT domains involved in nonhomologous end-joining: introducing the solution structure of the BRCT domain of polymerase lambda.
    Mueller GA; Moon AF; Derose EF; Havener JM; Ramsden DA; Pedersen LC; London RE
    DNA Repair (Amst); 2008 Aug; 7(8):1340-51. PubMed ID: 18585102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis.
    Brown JA; Pack LR; Sanman LE; Suo Z
    DNA Repair (Amst); 2011 Jan; 10(1):24-33. PubMed ID: 20961817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuous mismatch extension by human DNA polymerase lambda.
    Picher AJ; García-Díaz M; Bebenek K; Pedersen LC; Kunkel TA; Blanco L
    Nucleic Acids Res; 2006; 34(11):3259-66. PubMed ID: 16807316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enzymatic properties of Arabidopsis thaliana DNA polymerase λ suggest a role in base excision repair.
    Morales-Ruiz T; Beltrán-Melero C; Ortega-Paredes D; Luna-Morillo JA; Martínez-Macías MI; Roldán-Arjona T; Ariza RR; Córdoba-Cañero D
    Plant Mol Biol; 2024 Jan; 114(1):3. PubMed ID: 38217735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA scanning by base excision repair enzymes and implications for pathway coordination.
    Howard MJ; Wilson SH
    DNA Repair (Amst); 2018 Nov; 71():101-107. PubMed ID: 30181039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV.
    Bebenek K; Garcia-Diaz M; Patishall SR; Kunkel TA
    J Biol Chem; 2005 May; 280(20):20051-8. PubMed ID: 15778218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function studies of DNA polymerase λ.
    Bebenek K; Pedersen LC; Kunkel TA
    Biochemistry; 2014 May; 53(17):2781-92. PubMed ID: 24716527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase mu is a DNA-directed DNA/RNA polymerase.
    Nick McElhinny SA; Ramsden DA
    Mol Cell Biol; 2003 Apr; 23(7):2309-15. PubMed ID: 12640116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase lambda can elongate on DNA substrates mimicking non-homologous end joining and interact with XRCC4-ligase IV complex.
    Fan W; Wu X
    Biochem Biophys Res Commun; 2004 Oct; 323(4):1328-33. PubMed ID: 15451442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences.
    Crespan E; Czabany T; Maga G; Hübscher U
    Nucleic Acids Res; 2012 Jul; 40(12):5577-90. PubMed ID: 22373917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.