These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28894019)

  • 1. Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling.
    Kumar RK; Chu HH; Abundis C; Vasques K; Rodriguez DC; Chia JC; Huang R; Vatamaniuk OK; Walker EL
    Plant Physiol; 2017 Nov; 175(3):1254-1268. PubMed ID: 28894019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures.
    Chu HH; Chiecko J; Punshon T; Lanzirotti A; Lahner B; Salt DE; Walker EL
    Plant Physiol; 2010 Sep; 154(1):197-210. PubMed ID: 20625001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.
    Waters BM; Chu HH; Didonato RJ; Roberts LA; Eisley RB; Lahner B; Salt DE; Walker EL
    Plant Physiol; 2006 Aug; 141(4):1446-58. PubMed ID: 16815956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.
    Le Jean M; Schikora A; Mari S; Briat JF; Curie C
    Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes.
    DiDonato RJ; Roberts LA; Sanderson T; Eisley RB; Walker EL
    Plant J; 2004 Aug; 39(3):403-14. PubMed ID: 15255869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis.
    Rogers EE; Guerinot ML
    Plant Cell; 2002 Aug; 14(8):1787-99. PubMed ID: 12172022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis.
    Zhang Y; Wu H; Wang N; Fan H; Chen C; Cui Y; Liu H; Ling HQ
    New Phytol; 2014 Aug; 203(3):770-83. PubMed ID: 24889527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis.
    Haydon MJ; Kawachi M; Wirtz M; Hillmer S; Hell R; Krämer U
    Plant Cell; 2012 Feb; 24(2):724-37. PubMed ID: 22374397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots.
    Khan MA; Castro-Guerrero NA; McInturf SA; Nguyen NT; Dame AN; Wang J; Bindbeutel RK; Joshi T; Jurisson SS; Nusinow DA; Mendoza-Cozatl DG
    Plant Cell Environ; 2018 Oct; 41(10):2263-2276. PubMed ID: 29520929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.
    Mendoza-Cózatl DG; Xie Q; Akmakjian GZ; Jobe TO; Patel A; Stacey MG; Song L; Demoin DW; Jurisson SS; Stacey G; Schroeder JI
    Mol Plant; 2014 Sep; 7(9):1455-1469. PubMed ID: 24880337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered levels of AtHSCB disrupts iron translocation from roots to shoots.
    Leaden L; Pagani MA; Balparda M; Busi MV; Gomez-Casati DF
    Plant Mol Biol; 2016 Nov; 92(4-5):613-628. PubMed ID: 27655366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis.
    Schuler M; Rellán-Álvarez R; Fink-Straube C; Abadía J; Bauer P
    Plant Cell; 2012 Jun; 24(6):2380-400. PubMed ID: 22706286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRD3 controls iron localization in Arabidopsis.
    Green LS; Rogers EE
    Plant Physiol; 2004 Sep; 136(1):2523-31. PubMed ID: 15310833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zinc homeostasis network of land plants.
    Sinclair SA; Krämer U
    Biochim Biophys Acta; 2012 Sep; 1823(9):1553-67. PubMed ID: 22626733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.
    Lei GJ; Zhu XF; Wang ZW; Dong F; Dong NY; Zheng SJ
    Plant Cell Environ; 2014 Apr; 37(4):852-63. PubMed ID: 24111973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).
    Andrés-Bordería A; Andrés F; Garcia-Molina A; Perea-García A; Domingo C; Puig S; Peñarrubia L
    Plant Mol Biol; 2017 Sep; 95(1-2):17-32. PubMed ID: 28631167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants.
    Lin XY; Ye YQ; Fan SK; Jin CW; Zheng SJ
    Plant Physiol; 2016 Feb; 170(2):907-20. PubMed ID: 26644507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper.
    Mukherjee I; Campbell NH; Ash JS; Connolly EL
    Planta; 2006 May; 223(6):1178-90. PubMed ID: 16362328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.
    Meiser J; Lingam S; Bauer P
    Plant Physiol; 2011 Dec; 157(4):2154-66. PubMed ID: 21972265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.