BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28894115)

  • 1. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence.
    Li Y; Huang YA; You ZH; Li LP; Wang Z
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31430892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Drug-Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures.
    Meng FR; You ZH; Chen X; Zhou Y; An JY
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28678206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information.
    Zhan X; You Z; Yu C; Li L; Pan J
    Biomed Res Int; 2020; 2020():4516250. PubMed ID: 32908888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
    Huang YA; You ZH; Chen X
    Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.
    Zhao ZY; Huang WZ; Zhan XK; Pan J; Huang YA; Zhang SW; Yu CQ
    Biomed Res Int; 2021; 2021():9933873. PubMed ID: 33987446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved prediction of drug-target interactions based on ensemble learning with fuzzy local ternary pattern.
    Zhao ZY; Huang WZ; Zhan XK; Huang YA; Zhang SW; Yu CQ
    Front Biosci (Landmark Ed); 2021 Jul; 26(7):222-234. PubMed ID: 34340269
    [No Abstract]   [Full Text] [Related]  

  • 13. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring Interactions between Novel Drugs and Novel Targets via Instance-Neighborhood-Based Models.
    Shi JY; Li JX; Chen BL; Zhang Y
    Curr Protein Pept Sci; 2018; 19(5):488-497. PubMed ID: 27829347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target interaction prediction from PSSM based evolutionary information.
    Mousavian Z; Khakabimamaghani S; Kavousi K; Masoudi-Nejad A
    J Pharmacol Toxicol Methods; 2016; 78():42-51. PubMed ID: 26592807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.