These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
654 related articles for article (PubMed ID: 2889470)
1. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M; Knox BE; Tsong TY Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA; Berden JA; Kemp A; Slater EC Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis. Matsuno-Yagi A; Hatefi Y Biochemistry; 1988 Jan; 27(1):335-40. PubMed ID: 2894847 [TBL] [Abstract][Full Text] [Related]
4. A contribution of the mitochondrial adenosinetriphosphatase inhibitor protein to the thermal stability of the F0F1-ATPase complex. Saad-Nehme J; Bezerra AL; Fornells LA; Silva JL; Meyer-Fernandes JR Z Naturforsch C J Biosci; 1997; 52(7-8):459-65. PubMed ID: 9309877 [TBL] [Abstract][Full Text] [Related]
5. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors. Yamashita A; Miyoshi H; Hatano T; Iwamura H J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of proton translocation catalyzed by F0F1 ATPase. Muneyuki E; Hirata H FEBS Lett; 1988 Jul; 234(2):455-8. PubMed ID: 2899034 [TBL] [Abstract][Full Text] [Related]
7. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Kotlyar AB; Vinogradov AD Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805 [TBL] [Abstract][Full Text] [Related]
8. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. Papageorgiou S; Melandri AB; Solaini G J Bioenerg Biomembr; 1998 Dec; 30(6):533-41. PubMed ID: 10206473 [TBL] [Abstract][Full Text] [Related]
9. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate]. Kotliar AB; Vinogradov AD Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801 [TBL] [Abstract][Full Text] [Related]
10. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Scholes TA; Hinkle PC Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the respiratory chain in particles from Paracoccus denitrificans and bovine heart mitochondria by EPR spectroscopy. Albracht SP; van Verseveld HW; Hagen WR; Kalkman ML Biochim Biophys Acta; 1980 Dec; 593(2):173-86. PubMed ID: 6263319 [TBL] [Abstract][Full Text] [Related]
12. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases. Gwak SH; Yu L; Yu CA Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Rouslin W Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212 [TBL] [Abstract][Full Text] [Related]
14. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate]. Kotliar AB Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181 [TBL] [Abstract][Full Text] [Related]
15. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Forsmark-Andrée P; Lee CP; Dallner G; Ernster L Free Radic Biol Med; 1997; 22(3):391-400. PubMed ID: 8981030 [TBL] [Abstract][Full Text] [Related]
16. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase. Villaverde J; Cladera J; Padrós E; Rigaud JL; Duñach M Eur J Biochem; 1997 Mar; 244(2):441-8. PubMed ID: 9119010 [TBL] [Abstract][Full Text] [Related]
17. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of succinic dehydrogenase and F0F1-ATP synthase by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Bernardes CF; Meyer-Fernandes JR; Martins OB; Vercesi AE Z Naturforsch C J Biosci; 1997; 52(11-12):799-806. PubMed ID: 9463937 [TBL] [Abstract][Full Text] [Related]
19. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Wang JH; Cesana J; Wu JC Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376 [TBL] [Abstract][Full Text] [Related]
20. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds. Emanuel EL; Carver MA; Solani GC; Griffiths DE Biochim Biophys Acta; 1984 Jul; 766(1):209-14. PubMed ID: 6204688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]