BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 2889470)

  • 1. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Jan; 27(1):335-40. PubMed ID: 2894847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution of the mitochondrial adenosinetriphosphatase inhibitor protein to the thermal stability of the F0F1-ATPase complex.
    Saad-Nehme J; Bezerra AL; Fornells LA; Silva JL; Meyer-Fernandes JR
    Z Naturforsch C J Biosci; 1997; 52(7-8):459-65. PubMed ID: 9309877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of proton translocation catalyzed by F0F1 ATPase.
    Muneyuki E; Hirata H
    FEBS Lett; 1988 Jul; 234(2):455-8. PubMed ID: 2899034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase.
    Papageorgiou S; Melandri AB; Solaini G
    J Bioenerg Biomembr; 1998 Dec; 30(6):533-41. PubMed ID: 10206473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the respiratory chain in particles from Paracoccus denitrificans and bovine heart mitochondria by EPR spectroscopy.
    Albracht SP; van Verseveld HW; Hagen WR; Kalkman ML
    Biochim Biophys Acta; 1980 Dec; 593(2):173-86. PubMed ID: 6263319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles.
    Forsmark-Andrée P; Lee CP; Dallner G; Ernster L
    Free Radic Biol Med; 1997; 22(3):391-400. PubMed ID: 8981030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase.
    Villaverde J; Cladera J; Padrós E; Rigaud JL; Duñach M
    Eur J Biochem; 1997 Mar; 244(2):441-8. PubMed ID: 9119010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein.
    de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A
    Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of succinic dehydrogenase and F0F1-ATP synthase by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS).
    Bernardes CF; Meyer-Fernandes JR; Martins OB; Vercesi AE
    Z Naturforsch C J Biosci; 1997; 52(11-12):799-806. PubMed ID: 9463937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles.
    Wang JH; Cesana J; Wu JC
    Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds.
    Emanuel EL; Carver MA; Solani GC; Griffiths DE
    Biochim Biophys Acta; 1984 Jul; 766(1):209-14. PubMed ID: 6204688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.