These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 28894951)
1. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. Bafana A; Khan F; Suguna K Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951 [TBL] [Abstract][Full Text] [Related]
2. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans. Ernst C; Kayastha K; Koch T; Venceslau SS; Pereira IAC; Demmer U; Ermler U; Dahl C FEBS J; 2021 Mar; 288(5):1664-1678. PubMed ID: 32750208 [TBL] [Abstract][Full Text] [Related]
3. High-resolution studies of hydride transfer in the ferredoxin:NADP Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258 [TBL] [Abstract][Full Text] [Related]
4. Expression, purification and crystal structure determination of a ferredoxin reductase from the actinobacterium Thermobifida fusca. Rodriguez Buitrago JA; Klünemann T; Blankenfeldt W; Schallmey A Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):334-340. PubMed ID: 32744244 [TBL] [Abstract][Full Text] [Related]
5. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties. Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW J Biol Chem; 2021; 296():100221. PubMed ID: 33759784 [TBL] [Abstract][Full Text] [Related]
6. Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1. Bafana A; Chakrabarti T; Krishnamurthi K J Basic Microbiol; 2015 Mar; 55(3):285-92. PubMed ID: 24132860 [TBL] [Abstract][Full Text] [Related]
7. An unusual diphosphatase from the PhnP family cleaves reactive FAD photoproducts. Beaudoin GAW; Li Q; Bruner SD; Hanson AD Biochem J; 2018 Jan; 475(1):261-272. PubMed ID: 29229761 [TBL] [Abstract][Full Text] [Related]
8. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates. Caliandro R; Polsinelli I; Demitri N; Musiani F; Martens S; Benini S Int J Biol Macromol; 2021 Feb; 171():89-99. PubMed ID: 33412202 [TBL] [Abstract][Full Text] [Related]
9. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Buey RM; Arellano JB; López-Maury L; Galindo-Trigo S; Velázquez-Campoy A; Revuelta JL; de Pereda JM; Florencio FJ; Schürmann P; Buchanan BB; Balsera M Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12725-12730. PubMed ID: 29133410 [TBL] [Abstract][Full Text] [Related]
10. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum. Lee CW; Kwon S; Park SH; Kim BY; Yoo W; Ryu BH; Kim HW; Shin SC; Kim S; Park H; Kim TD; Lee JH PLoS One; 2017; 12(1):e0169540. PubMed ID: 28125606 [TBL] [Abstract][Full Text] [Related]
11. Purification, characterization, and crystal structure of YhdA-type azoreductase from Bacillus velezensis. Bafana A; Khan F; Suguna K Proteins; 2021 May; 89(5):483-492. PubMed ID: 33289153 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797 [TBL] [Abstract][Full Text] [Related]
13. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
14. The structure and activity of the glutathione reductase from Streptococcus pneumoniae. Sikanyika M; Aragão D; McDevitt CA; Maher MJ Acta Crystallogr F Struct Biol Commun; 2019 Jan; 75(Pt 1):54-61. PubMed ID: 30605126 [TBL] [Abstract][Full Text] [Related]
15. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Opperman DJ Proteins; 2017 Dec; 85(12):2252-2257. PubMed ID: 28833623 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the structure and substrate scope of chitooligosaccharide oxidase reveals high affinity for C2-modified glucosamines. Savino S; Jensen S; Terwisscha van Scheltinga A; Fraaije MW FEBS Lett; 2020 Sep; 594(17):2819-2828. PubMed ID: 32491191 [TBL] [Abstract][Full Text] [Related]
17. Thermal Stability of a Mercuric Reductase from the Red Sea Atlantis II Hot Brine Environment as Analyzed by Site-Directed Mutagenesis. Maged M; El Hosseiny A; Saadeldin MK; Aziz RK; Ramadan E Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446558 [TBL] [Abstract][Full Text] [Related]
18. Binding of NADP Blaise M; Van Wyk N; Banères-Roquet F; Guérardel Y; Kremer L Biochem J; 2017 Mar; 474(6):907-921. PubMed ID: 28126742 [TBL] [Abstract][Full Text] [Related]
19. Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Dash HR; Sahu M; Mallick B; Das S Biochimie; 2017 Nov; 142():207-215. PubMed ID: 28966143 [TBL] [Abstract][Full Text] [Related]
20. Interaction of Tn501 mercuric reductase and dihydroflavin adenine dinucleotide anion with metal ions: implications for the mechanism of mercuric reductase mediated Hg(II) reduction. Cummings RT; Walsh CT Biochemistry; 1992 Feb; 31(4):1020-30. PubMed ID: 1310417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]