These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 28895022)
1. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Majumder EL; Wolf BM; Liu H; Berg RH; Timlin JA; Chen M; Blankenship RE Photosynth Res; 2017 Nov; 134(2):183-192. PubMed ID: 28895022 [TBL] [Abstract][Full Text] [Related]
2. Adaptive and acclimative responses of cyanobacteria to far-red light. Gan F; Bryant DA Environ Microbiol; 2015 Oct; 17(10):3450-65. PubMed ID: 26234306 [TBL] [Abstract][Full Text] [Related]
3. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078 [TBL] [Abstract][Full Text] [Related]
4. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Li Y; Lin Y; Garvey CJ; Birch D; Corkery RW; Loughlin PC; Scheer H; Willows RD; Chen M Biochim Biophys Acta; 2016 Jan; 1857(1):107-114. PubMed ID: 26514405 [TBL] [Abstract][Full Text] [Related]
5. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357 [TBL] [Abstract][Full Text] [Related]
6. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821 [TBL] [Abstract][Full Text] [Related]
7. Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. Bryant DA; Shen G; Turner GM; Soulier N; Laremore TN; Ho MY Photosynth Res; 2020 Jan; 143(1):81-95. PubMed ID: 31760552 [TBL] [Abstract][Full Text] [Related]
8. The specificity of the bilin lyase CpcS for chromophore attachment to allophycocyanin in the chlorophyll f-containing cyanobacterium Halomicronima hongdechloris. Li Y; Chen M Photosynth Res; 2022 Mar; 151(3):213-223. PubMed ID: 34564824 [TBL] [Abstract][Full Text] [Related]
9. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637 [TBL] [Abstract][Full Text] [Related]
10. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Kurashov V; Ho MY; Shen G; Piedl K; Laremore TN; Bryant DA; Golbeck JH Photosynth Res; 2019 Aug; 141(2):151-163. PubMed ID: 30710189 [TBL] [Abstract][Full Text] [Related]
11. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Cherepanov DA; Shelaev IV; Gostev FE; Aybush AV; Mamedov MD; Shen G; Nadtochenko VA; Bryant DA; Semenov AY; Golbeck JH Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148184. PubMed ID: 32179058 [TBL] [Abstract][Full Text] [Related]
12. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Shen G; Canniffe DP; Ho MY; Kurashov V; van der Est A; Golbeck JH; Bryant DA Photosynth Res; 2019 Apr; 140(1):77-92. PubMed ID: 30607859 [TBL] [Abstract][Full Text] [Related]
13. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light. Ho MY; Gan F; Shen G; Bryant DA Photosynth Res; 2017 Feb; 131(2):187-202. PubMed ID: 27623780 [TBL] [Abstract][Full Text] [Related]
14. Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. Hirose Y; Chihong S; Watanabe M; Yonekawa C; Murata K; Ikeuchi M; Eki T Mol Plant; 2019 May; 12(5):715-725. PubMed ID: 30818037 [TBL] [Abstract][Full Text] [Related]
15. Far-red light acclimation in diverse oxygenic photosynthetic organisms. Wolf BM; Blankenship RE Photosynth Res; 2019 Dec; 142(3):349-359. PubMed ID: 31222688 [TBL] [Abstract][Full Text] [Related]
16. Adaptation processes in Schmitt FJ; Friedrich T Front Plant Sci; 2024; 15():1359195. PubMed ID: 39049856 [TBL] [Abstract][Full Text] [Related]
17. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. Mondal S; Pandey D; Singh SP Physiol Plant; 2024; 176(5):e14536. PubMed ID: 39323055 [TBL] [Abstract][Full Text] [Related]
18. How electron tunneling and uphill excitation energy transfer support photochemistry in Halomicronema hongdechloris. Schmitt FJ; Hüls A; Moldenhauer M; Friedrich T Photosynth Res; 2024 Mar; 159(2-3):273-289. PubMed ID: 38198121 [TBL] [Abstract][Full Text] [Related]
19. Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A Hastings G; Makita H; Agarwala N; Rohani L; Shen G; Bryant DA Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):452-460. PubMed ID: 30986391 [TBL] [Abstract][Full Text] [Related]
20. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. Gisriel CJ; Shen G; Flesher DA; Kurashov V; Golbeck JH; Brudvig GW; Amin M; Bryant DA J Biol Chem; 2023 Jan; 299(1):102815. PubMed ID: 36549647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]