BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28895133)

  • 21. Maternal hyperglycemia disturbs neocortical neurogenesis via epigenetic regulation in C57BL/6J mice.
    Ji S; Zhou W; Li X; Liu S; Wang F; Li X; Zhao T; Ji G; Du J; Hao A
    Cell Death Dis; 2019 Mar; 10(3):211. PubMed ID: 30824686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opposing Gradients of MicroRNA Expression Temporally Pattern Layer Formation in the Developing Neocortex.
    Shu P; Wu C; Ruan X; Liu W; Hou L; Fu H; Wang M; Liu C; Zeng Y; Chen P; Yin B; Yuan J; Qiang B; Peng X; Zhong W
    Dev Cell; 2019 Jun; 49(5):764-785.e4. PubMed ID: 31080058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evolution of basal progenitors in the developing non-mammalian brain.
    Nomura T; Ohtaka-Maruyama C; Yamashita W; Wakamatsu Y; Murakami Y; Calegari F; Suzuki K; Gotoh H; Ono K
    Development; 2016 Jan; 143(1):66-74. PubMed ID: 26732839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tcf7L2 is essential for neurogenesis in the developing mouse neocortex.
    Chodelkova O; Masek J; Korinek V; Kozmik Z; Machon O
    Neural Dev; 2018 May; 13(1):8. PubMed ID: 29751817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Principles of neural stem cell lineage progression: Insights from developing cerebral cortex.
    Hippenmeyer S
    Curr Opin Neurobiol; 2023 Apr; 79():102695. PubMed ID: 36842274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution.
    Kalebic N; Namba T
    Development; 2021 Sep; 148(17):. PubMed ID: 34499710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture.
    Mizutani KI
    Genes Cells; 2018 Jan; 23(1):6-15. PubMed ID: 29193520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progenitor networking in the fetal primate neocortex.
    Huttner WB; Kelava I; Lewitus E
    Neuron; 2013 Oct; 80(2):259-62. PubMed ID: 24139029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of SF-1 in neurogenesis and neuronal migration in the developing neocortex.
    Komada M; Takahashi M; Ikeda Y
    Neurosci Lett; 2015 Jul; 600():85-90. PubMed ID: 26067405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex.
    Postiglione MP; Jüschke C; Xie Y; Haas GA; Charalambous C; Knoblich JA
    Neuron; 2011 Oct; 72(2):269-84. PubMed ID: 22017987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal plasticity of apical progenitors in the developing mouse neocortex.
    Oberst P; Fièvre S; Baumann N; Concetti C; Bartolini G; Jabaudon D
    Nature; 2019 Sep; 573(7774):370-374. PubMed ID: 31462778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development.
    Ohtsuka T; Kageyama R
    Semin Cell Dev Biol; 2019 Nov; 95():4-11. PubMed ID: 30634047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clonal production and organization of inhibitory interneurons in the neocortex.
    Brown KN; Chen S; Han Z; Lu CH; Tan X; Zhang XJ; Ding L; Lopez-Cruz A; Saur D; Anderson SA; Huang K; Shi SH
    Science; 2011 Oct; 334(6055):480-6. PubMed ID: 22034427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variations of telencephalic development that paved the way for neocortical evolution.
    García-Moreno F; Molnár Z
    Prog Neurobiol; 2020 Nov; 194():101865. PubMed ID: 32526253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postnatal subventricular zone progenitors switch their fate to generate neurons with distinct synaptic input patterns.
    Ravi N; Li Z; Oettl LL; Bartsch D; Schönig K; Kelsch W
    Development; 2015 Jan; 142(2):303-13. PubMed ID: 25519243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of the nervous system and vascular system is required for the proper assembly of the neocortex.
    Takashima S; Watanabe C; Ema M; Mizutani KI
    Neurochem Int; 2019 Oct; 129():104481. PubMed ID: 31150772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex.
    Namba T; Huttner WB
    Wiley Interdiscip Rev Dev Biol; 2017 Jan; 6(1):. PubMed ID: 27865053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex.
    Li Z; Tyler WA; Zeldich E; Santpere Baró G; Okamoto M; Gao T; Li M; Sestan N; Haydar TF
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33158872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Longitudinal tracking of hemocyte populations in vivo indicates lineage relationships and supports neural progenitor identity in adult neurogenesis.
    Edwards AJ; Beltz BS
    Neural Dev; 2024 Jun; 19(1):7. PubMed ID: 38902780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors.
    Jakovcevski I; Mayer N; Zecevic N
    Cereb Cortex; 2011 Aug; 21(8):1771-82. PubMed ID: 21139075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.