These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28895302)

  • 1. Catalytic Upgrading of Ethanol to n-Butanol: Progress in Catalyst Development.
    Wu X; Fang G; Tong Y; Jiang D; Liang Z; Leng W; Liu L; Tu P; Wang H; Ni J; Li X
    ChemSusChem; 2018 Jan; 11(1):71-85. PubMed ID: 28895302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction.
    Du W; Wang Q; Saxner D; Deskins NA; Su D; Krzanowski JE; Frenkel AI; Teng X
    J Am Chem Soc; 2011 Sep; 133(38):15172-83. PubMed ID: 21812458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.
    Lee JM; Upare PP; Chang JS; Hwang YK; Lee JH; Hwang DW; Hong DY; Lee SH; Jeong MG; Kim YD; Kwon YU
    ChemSusChem; 2014 Nov; 7(11):2998-3001. PubMed ID: 25123894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol.
    Xiao Y; Li J; Tan Y; Chen X; Bai F; Luo W; Ding Y
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.
    Sponholz P; Mellmann D; Cordes C; Alsabeh PG; Li B; Li Y; Nielsen M; Junge H; Dixneuf P; Beller M
    ChemSusChem; 2014 Sep; 7(9):2419-22. PubMed ID: 25088665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Generation of Lactic Acid from Glycerol over a Ru-Zn-Cu
    Jiang Z; Zhang Z; Wu T; Zhang P; Song J; Xie C; Han B
    Chem Asian J; 2017 Jul; 12(13):1598-1604. PubMed ID: 28464466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.
    Olson ES; Sharma RK; Aulich TR
    Appl Biochem Biotechnol; 2004; 113-116():913-32. PubMed ID: 15054242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.
    Sushkevich VL; Ivanova II; Ordomsky VV; Taarning E
    ChemSusChem; 2014 Sep; 7(9):2527-36. PubMed ID: 25123990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Selective and Stable Cu Catalysts Based on Ni-Al Catalytic Systems for Bioethanol Upgrading to n-Butanol.
    Xiao Y; Zhan N; Li J; Tan Y; Ding Y
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation.
    Gorlin Y; Jaramillo TF
    J Am Chem Soc; 2010 Oct; 132(39):13612-4. PubMed ID: 20839797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic conversion of bio-oil to oxygen-containing fuels by simultaneous reactions with 1-butanol and 1-octene over solid acids: Model compound studies and reaction pathways.
    Zhang ZJ; Sui SJ; Tan S; Wang QW; Pittman CU
    Bioresour Technol; 2013 Feb; 130():789-92. PubMed ID: 23357587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol.
    Fu S; Shao Z; Wang Y; Liu Q
    J Am Chem Soc; 2017 Aug; 139(34):11941-11948. PubMed ID: 28820246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol.
    Dowson GR; Haddow MF; Lee J; Wingad RL; Wass DF
    Angew Chem Int Ed Engl; 2013 Aug; 52(34):9005-8. PubMed ID: 23843255
    [No Abstract]   [Full Text] [Related]  

  • 14. Ethanol Upgrading to
    Cypher SM; Pauly M; Castro LG; Donley CL; Maggard PA; Goldberg KI
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36384-36393. PubMed ID: 37486020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.
    Cai W; Piscina PR; Gabrowska K; Homs N
    Bioresour Technol; 2013 Jan; 128():467-71. PubMed ID: 23201530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxide encapsulated by ruthenium hydroxyapatite as heterogeneous catalyst for the synthesis of 2,5-diformylfuran.
    Zhang Z; Yuan Z; Tang D; Ren Y; Lv K; Liu B
    ChemSusChem; 2014 Dec; 7(12):3496-504. PubMed ID: 25138656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic conversion of methanol/ethanol to isobutanol--a highly selective route to an advanced biofuel.
    Wingad RL; Bergström EJ; Everett M; Pellow KJ; Wass DF
    Chem Commun (Camb); 2016 Apr; 52(29):5202-4. PubMed ID: 26998669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions.
    Chieregato A; Velasquez Ochoa J; Bandinelli C; Fornasari G; Cavani F; Mella M
    ChemSusChem; 2015 Jan; 8(2):377-88. PubMed ID: 25504787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-valent ruthenium and iridium hydride complexes as alternatives to Lewis acid and base catalysts.
    Murahashi S; Takaya H
    Acc Chem Res; 2000 Apr; 33(4):225-33. PubMed ID: 10775315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.