These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28895400)

  • 1. The Role of Electrode-Catalyst Interactions in Enabling Efficient CO
    Neri G; Donaldson PM; Cowan AJ
    J Am Chem Soc; 2017 Oct; 139(39):13791-13797. PubMed ID: 28895400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Dependent Reorientation Controlling Activity of a Molecular Electrocatalyst.
    Gardner AM; Neri G; Siritanaratkul B; Jang H; Saeed KH; Donaldson PM; Cowan AJ
    J Am Chem Soc; 2024 Mar; 146(11):7130-7134. PubMed ID: 38441442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ study of the low overpotential "dimer pathway" for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes.
    Neri G; Donaldson PM; Cowan AJ
    Phys Chem Chem Phys; 2019 Apr; 21(14):7389-7397. PubMed ID: 30906938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO
    Siritanaratkul B; Eagle C; Cowan AJ
    Acc Chem Res; 2022 Apr; 55(7):955-965. PubMed ID: 35285618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2,2'-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO
    Popov DA; Luna JM; Orchanian NM; Haiges R; Downes CA; Marinescu SC
    Dalton Trans; 2018 Dec; 47(48):17450-17460. PubMed ID: 30499569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-bipyridine complexes as electrocatalysts for the reduction of CO
    Zhang P; Yang X; Hou X; Xu X; Xiao B; Huang J; Stampfl C
    Phys Chem Chem Phys; 2019 Oct; 21(42):23742-23748. PubMed ID: 31637382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands.
    Kobayashi K; Tanaka K
    Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction-induced CO dissociation by a [Mn(bpy)(CO)
    Kuo HY; Tignor SE; Lee TS; Ni D; Park JE; Scholes GD; Bocarsly AB
    Dalton Trans; 2020 Jan; 49(3):891-900. PubMed ID: 31859334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic Reduction of CO2 by Group 6 M(CO)6 Species without "Non-Innocent" Ligands.
    Grice KA; Saucedo C
    Inorg Chem; 2016 Jun; 55(12):6240-6. PubMed ID: 27227447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the cation dependence of CO
    Banerji LC; Jang H; Gardner AM; Cowan AJ
    Chem Sci; 2024 Feb; 15(8):2889-2897. PubMed ID: 38404396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations.
    Ge A; Rudshteyn B; Videla PE; Miller CJ; Kubiak CP; Batista VS; Lian T
    Acc Chem Res; 2019 May; 52(5):1289-1300. PubMed ID: 31056907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO
    Kuo HY; Lee TS; Chu AT; Tignor SE; Scholes GD; Bocarsly AB
    Dalton Trans; 2019 Jan; 48(4):1226-1236. PubMed ID: 30338331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-Range Catalyst-Surface Interactions Revealed by Heterodyne Two-Dimensional Sum Frequency Generation Spectroscopy.
    Wang J; Clark ML; Li Y; Kaslan CL; Kubiak CP; Xiong W
    J Phys Chem Lett; 2015 Nov; 6(21):4204-9. PubMed ID: 26538035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation.
    Gardner AM; Saeed KH; Cowan AJ
    Phys Chem Chem Phys; 2019 Jun; 21(23):12067-12086. PubMed ID: 31143914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Clark ML; Ge A; Videla PE; Rudshteyn B; Miller CJ; Song J; Batista VS; Lian T; Kubiak CP
    J Am Chem Soc; 2018 Dec; 140(50):17643-17655. PubMed ID: 30468391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of water on low-overpotential CO
    García Rey N; Dlott DD
    Phys Chem Chem Phys; 2017 Apr; 19(16):10491-10501. PubMed ID: 28383582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Spectroscopy as a Method to Investigate Catalytic Intermediates: CO2 Reducing [Re(Cl)(bpy-R)(CO)3] Catalyst.
    Kalläne SI; van Gastel M
    J Phys Chem A; 2016 Sep; 120(38):7465-74. PubMed ID: 27580084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids.
    Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP
    Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide release catalysed by electron transfer: electrochemical and spectroscopic investigations of [Re(bpy-R)(CO)4](OTf) complexes relevant to CO2 reduction.
    Grice KA; Gu NX; Sampson MD; Kubiak CP
    Dalton Trans; 2013 Jun; 42(23):8498-503. PubMed ID: 23629511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO
    Cattaneo M; Guo F; Kelly HR; Videla PE; Kiefer L; Gebre S; Ge A; Liu Q; Wu S; Lian T; Batista VS
    Front Chem; 2020; 8():86. PubMed ID: 32117901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.