These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28895403)

  • 21. Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes.
    Alegret N; Dominguez-Alfaro A; Mecerreyes D; Prato M; Mestroni L; Peña B
    Cell Biol Toxicol; 2023 Aug; 39(4):1627-1639. PubMed ID: 36029423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.
    Martinelli V; Cellot G; Toma FM; Long CS; Caldwell JH; Zentilin L; Giacca M; Turco A; Prato M; Ballerini L; Mestroni L
    ACS Nano; 2013 Jul; 7(7):5746-56. PubMed ID: 23734857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation.
    Shin SR; Bae H; Cha JM; Mun JY; Chen YC; Tekin H; Shin H; Zarabi S; Dokmeci MR; Tang S; Khademhosseini A
    ACS Nano; 2012 Jan; 6(1):362-72. PubMed ID: 22117858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering.
    Roshanbinfar K; Mohammadi Z; Sheikh-Mahdi Mesgar A; Dehghan MM; Oommen OP; Hilborn J; Engel FB
    Biomater Sci; 2019 Sep; 7(9):3906-3917. PubMed ID: 31322163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
    Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P
    Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth.
    Taale M; Schütt F; Zheng K; Mishra YK; Boccaccini AR; Adelung R; Selhuber-Unkel C
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43874-43886. PubMed ID: 30395704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs.
    Liu L; Yang B; Wang LQ; Huang JP; Chen WY; Ban Q; Zhang Y; You R; Yin L; Guan YQ
    J Mater Chem B; 2020 Jan; 8(3):558-567. PubMed ID: 31854433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering.
    Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity.
    Ravanbakhsh H; Bao G; Latifi N; Mongeau LG
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109861. PubMed ID: 31349421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superaligned Carbon Nanotubes Guide Oriented Cell Growth and Promote Electrophysiological Homogeneity for Synthetic Cardiac Tissues.
    Ren J; Xu Q; Chen X; Li W; Guo K; Zhao Y; Wang Q; Zhang Z; Peng H; Li YG
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering.
    Liu X; George MN; Li L; Gamble D; Miller Ii AL; Gaihre B; Waletzki BE; Lu L
    ACS Biomater Sci Eng; 2020 Aug; 6(8):4653-4665. PubMed ID: 33455193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications.
    Tondnevis F; Keshvari H; Mohandesi JA
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2276-2293. PubMed ID: 31967388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Injectable Reverse Thermal Gel for Minimally Invasive Coverage of Mouse Myelomeningocele.
    Bardill J; Williams SM; Shabeka U; Niswander L; Park D; Marwan AI
    J Surg Res; 2019 Mar; 235():227-236. PubMed ID: 30691800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired Soft Robot with Incorporated Microelectrodes.
    Wang T; Migliori B; Miccoli B; Shin SR
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel.
    Tijore A; Irvine SA; Sarig U; Mhaisalkar P; Baisane V; Venkatraman S
    Biofabrication; 2018 Jan; 10(2):025003. PubMed ID: 29235444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and detection of a novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes (Alg/Gel/mMWCNTs) for neural tissue engineering.
    Ma H; Yu K; Wang H; Liu J; Cheng YY; Kang Y; Wang H; Zhang J; Song K
    Tissue Cell; 2023 Feb; 80():101995. PubMed ID: 36512950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing.
    Wang Y; Yang S; Cai H; Hu H; Hu K; Sun Z; Liu R; Wei Y; Han L
    Sci Rep; 2024 Feb; 14(1):4118. PubMed ID: 38374394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.