These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28895611)

  • 21. Hybrid surface design for robust superhydrophobicity.
    Dash S; Alt MT; Garimella SV
    Langmuir; 2012 Jun; 28(25):9606-15. PubMed ID: 22630787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High friction on a bubble mattress.
    Steinberger A; Cottin-Bizonne C; Kleimann P; Charlaix E
    Nat Mater; 2007 Sep; 6(9):665-8. PubMed ID: 17643106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion of overdamped diffusing particles in channel flows coupled to transverse acoustophoretic potentials: transport regimes and scaling anomalies.
    Giona M; Garofalo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032104. PubMed ID: 26465423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser.
    Long J; Pan L; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    Langmuir; 2016 Feb; 32(4):1065-72. PubMed ID: 26745154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
    Dubov AL; Schmieschek S; Asmolov ES; Harting J; Vinogradova OI
    J Chem Phys; 2014 Jan; 140(3):034707. PubMed ID: 25669407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective slippage on superhydrophobic trapezoidal grooves.
    Zhou J; Asmolov ES; Schmid F; Vinogradova OI
    J Chem Phys; 2013 Nov; 139(17):174708. PubMed ID: 24206323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of surface hierarchy of superhydrophobic surfaces on liquid slip.
    Lee C; Kim CJ
    Langmuir; 2011 Apr; 27(7):4243-8. PubMed ID: 21370888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flows and mixing in channels with misaligned superhydrophobic walls.
    Nizkaya TV; Asmolov ES; Zhou J; Schmid F; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033020. PubMed ID: 25871215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.
    Zhao C; Yang C
    Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phenomenological continuum model for force-driven nano-channel liquid flows.
    Ghorbanian J; Celebi AT; Beskok A
    J Chem Phys; 2016 Nov; 145(18):184109. PubMed ID: 27846688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing effective slippage on superhydrophobic stripes by atomic force microscopy.
    Nizkaya TV; Dubov AL; Mourran A; Vinogradova OI
    Soft Matter; 2016 Aug; 12(33):6910-7. PubMed ID: 27476481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrokinetics on superhydrophobic surfaces.
    Papadopoulos P; Deng X; Vollmer D; Butt HJ
    J Phys Condens Matter; 2012 Nov; 24(46):464110. PubMed ID: 23113983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.
    Xiang Y; Xue Y; Lv P; Li D; Duan H
    Soft Matter; 2016 May; 12(18):4241-6. PubMed ID: 27071538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.