These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28895724)
1. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. Park J; Kumar V; Wang X; Lee PS; Kim W ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724 [TBL] [Abstract][Full Text] [Related]
2. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors. Li M; Westover AS; Carter R; Oakes L; Muralidharan N; Boire TC; Sung HJ; Pint CL ACS Appl Mater Interfaces; 2016 Aug; 8(30):19558-66. PubMed ID: 27380273 [TBL] [Abstract][Full Text] [Related]
3. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Chen YC; Lin LY J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650 [TBL] [Abstract][Full Text] [Related]
4. Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte. Lamiel C; Lee YR; Cho MH; Tuma D; Shim JJ J Colloid Interface Sci; 2017 Dec; 507():300-309. PubMed ID: 28802197 [TBL] [Abstract][Full Text] [Related]
5. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte. Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855 [TBL] [Abstract][Full Text] [Related]
6. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte. Park J; Kim B; Yoo YE; Chung H; Kim W ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124 [TBL] [Abstract][Full Text] [Related]
7. Heterogeneous electron transfer kinetics at the ionic liquid/metal interface studied using cyclic voltammetry and scanning electrochemical microscopy. Taylor AW; Qiu F; Hu J; Licence P; Walsh DA J Phys Chem B; 2008 Oct; 112(42):13292-9. PubMed ID: 18826190 [TBL] [Abstract][Full Text] [Related]
9. Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Shul G; Bélanger D Phys Chem Chem Phys; 2016 Jul; 18(28):19137-45. PubMed ID: 27356866 [TBL] [Abstract][Full Text] [Related]
10. Comparison of fast electron transfer kinetics at platinum, gold, glassy carbon and diamond electrodes using Fourier-transformed AC voltammetry and scanning electrochemical microscopy. Tan SY; Lazenby RA; Bano K; Zhang J; Bond AM; Macpherson JV; Unwin PR Phys Chem Chem Phys; 2017 Mar; 19(13):8726-8734. PubMed ID: 28317963 [TBL] [Abstract][Full Text] [Related]
11. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. Zhang B; Zhang X; Xiao X; Shen Y ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831 [TBL] [Abstract][Full Text] [Related]
12. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
13. An SECM-Based Spot Analysis for Redoxmer-Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces. Gaddam R; Sarbapalli D; Howard J; Curtiss LA; Assary RS; Rodríguez-López J Chem Asian J; 2023 Jan; 18(2):e202201120. PubMed ID: 36482038 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542 [TBL] [Abstract][Full Text] [Related]
15. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte. Shinde PA; Lokhande VC; Chodankar NR; Ji T; Kim JH; Lokhande CD J Colloid Interface Sci; 2016 Dec; 483():261-267. PubMed ID: 27565957 [TBL] [Abstract][Full Text] [Related]
16. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632 [TBL] [Abstract][Full Text] [Related]
17. Impact of electrolyte composition on the reactivity of a redox active polymer studied through surface interrogation and ion-sensitive scanning electrochemical microscopy. Burgess M; Hernández-Burgos K; Cheng KJ; Moore JS; Rodríguez-López J Analyst; 2016 Jun; 141(12):3842-50. PubMed ID: 27064026 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics. Su F; Miao M Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526 [TBL] [Abstract][Full Text] [Related]
19. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite. Amemiya S; Chen R; Nioradze N; Kim J Acc Chem Res; 2016 Sep; 49(9):2007-14. PubMed ID: 27602588 [TBL] [Abstract][Full Text] [Related]
20. Design and Fabrication of Printed Paper-Based Hybrid Micro-Supercapacitor by using Graphene and Redox-Active Electrolyte. Nagar B; Dubal DP; Pires L; Merkoçi A; Gómez-Romero P ChemSusChem; 2018 Jun; 11(11):1849-1856. PubMed ID: 29786963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]