These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28895730)

  • 1. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing.
    Rose JC; Stephany JJ; Wei CT; Fowler DM; Maly DJ
    ACS Chem Biol; 2018 Feb; 13(2):438-442. PubMed ID: 28895730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal and rheostatic control of genome editing with a chemically-inducible Cas9.
    Wei CT; Maly DJ; Fowler DM
    Methods Enzymol; 2020; 633():119-141. PubMed ID: 32046842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics.
    Rose JC; Stephany JJ; Valente WJ; Trevillian BM; Dang HV; Bielas JH; Maly DJ; Fowler DM
    Nat Methods; 2017 Sep; 14(9):891-896. PubMed ID: 28737741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and nucleolytic processing of Cas9-induced DNA breaks in human cells quantified by droplet digital PCR.
    Dibitetto D; La Monica M; Ferrari M; Marini F; Pellicioli A
    DNA Repair (Amst); 2018 Aug; 68():68-74. PubMed ID: 30017059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells.
    Lin L; Petersen TS; Jensen KT; Bolund L; Kühn R; Luo Y
    J Biotechnol; 2017 Apr; 247():42-49. PubMed ID: 28259533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing.
    Reginato G; Dello Stritto MR; Wang Y; Hao J; Pavani R; Schmitz M; Halder S; Morin V; Cannavo E; Ceppi I; Braunshier S; Acharya A; Ropars V; Charbonnier JB; Jinek M; Nussenzweig A; Ha T; Cejka P
    Nat Commun; 2024 Jul; 15(1):5789. PubMed ID: 38987539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.
    Clarke R; Heler R; MacDougall MS; Yeo NC; Chavez A; Regan M; Hanakahi L; Church GM; Marraffini LA; Merrill BJ
    Mol Cell; 2018 Jul; 71(1):42-55.e8. PubMed ID: 29979968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs.
    Paix A; Schmidt H; Seydoux G
    Nucleic Acids Res; 2016 Sep; 44(15):e128. PubMed ID: 27257074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9.
    Bubeck F; Hoffmann MD; Harteveld Z; Aschenbrenner S; Bietz A; Waldhauer MC; Börner K; Fakhiri J; Schmelas C; Dietz L; Grimm D; Correia BE; Eils R; Niopek D
    Nat Methods; 2018 Nov; 15(11):924-927. PubMed ID: 30377362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9; an efficient tool for precise plant genome editing.
    Islam W
    Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency.
    Park SJ; Yoon S; Choi EH; Hyeon H; Lee K; Kim KP
    BMB Rep; 2023 Feb; 56(2):102-107. PubMed ID: 36513383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies.
    Liu Y; Cottle WT; Ha T
    Trends Genet; 2023 Jul; 39(7):560-574. PubMed ID: 36967246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9(1.1) to nick the target DNA strand.
    Fan R; Chai Z; Xing S; Chen K; Qiu F; Chai T; Qiu JL; Zhang Z; Zhang H; Gao C
    Sci China Life Sci; 2020 Nov; 63(11):1619-1630. PubMed ID: 32592086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional chemical control of CRISPR-Cas9.
    Maji B; Moore CL; Zetsche B; Volz SE; Zhang F; Shoulders MD; Choudhary A
    Nat Chem Biol; 2017 Jan; 13(1):9-11. PubMed ID: 27820801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.