These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28895802)

  • 41. Effects of shoe sole geometry on toe clearance and walking stability in older adults.
    Thies SB; Price C; Kenney LP; Baker R
    Gait Posture; 2015 Jul; 42(2):105-9. PubMed ID: 26032398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fall inducing movable platform (FIMP) for overground trips and slips.
    Er JK; Donnelly CJW; Wee SK; Ang WT
    J Neuroeng Rehabil; 2020 Dec; 17(1):161. PubMed ID: 33272286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.
    Yang F; Kim J; Yang F
    J Biomech; 2017 Feb; 53():148-153. PubMed ID: 28131487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive gait responses to awareness of an impending slip during treadmill walking.
    Yang F; Kim J; Munoz J
    Gait Posture; 2016 Oct; 50():175-179. PubMed ID: 27632061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Reactions to Laterally Directed Perturbations in People With Chronic Stroke.
    Schinkel-Ivy A; Aqui A; Danells CJ; Mansfield A
    Phys Ther; 2018 Jul; 98(7):585-594. PubMed ID: 29566223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of limb collapse following a slip among young and older adults.
    Pai YC; Yang F; Wening JD; Pavol MJ
    J Biomech; 2006; 39(12):2194-204. PubMed ID: 16125182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of multi-joint muscular fatigue on biomechanics of slips.
    Lew FL; Qu X
    J Biomech; 2014 Jan; 47(1):59-64. PubMed ID: 24182771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stepping Responses in Young and Older Adults Following a Perturbation to the Support Surface During Gait.
    McIntosh EI; Zettel JL; Vallis LA
    J Mot Behav; 2017; 49(3):288-298. PubMed ID: 27723429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of a single-session stance-slip perturbation training program on reducing risk of slip-related falls.
    Yang F; Saucedo F; Qiao M
    J Biomech; 2018 Apr; 72():1-6. PubMed ID: 29486896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait stability in response to platform, belt, and sensory perturbations in young and older adults.
    Roeles S; Rowe PJ; Bruijn SM; Childs CR; Tarfali GD; Steenbrink F; Pijnappels M
    Med Biol Eng Comput; 2018 Dec; 56(12):2325-2335. PubMed ID: 29946955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?
    Inkol KA; Huntley AH; Vallis LA
    Exp Brain Res; 2018 Jun; 236(6):1689-1698. PubMed ID: 29623379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Task-specific training reduces trip-related fall risk in women.
    Grabiner MD; Bareither ML; Gatts S; Marone J; Troy KL
    Med Sci Sports Exerc; 2012 Dec; 44(12):2410-4. PubMed ID: 22811033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    BMC Geriatr; 2007 May; 7():12. PubMed ID: 17540020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A single session of perturbation-based gait training with the A-TPAD improves dynamic stability in healthy young subjects.
    Martelli D; Kang J; Agrawal SK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():479-484. PubMed ID: 28813866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task.
    Fuller JR; Fung J; Côté JN
    Hum Mov Sci; 2013 Aug; 32(4):618-32. PubMed ID: 24054899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new fall-inducing technology platform: Development and assessment of a programmable split-belt treadmill.
    Beom-Chan Lee ; Martin BJ; Thrasher TA; Layne CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3777-3780. PubMed ID: 29060720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anticipatory postural adjustments during a Fitts' task: Comparing young versus older adults and the effects of different foci of attention.
    Aloraini SM; Glazebrook CM; Sibley KM; Singer J; Passmore S
    Hum Mov Sci; 2019 Apr; 64():366-377. PubMed ID: 30856380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.