These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28895914)

  • 1. A 24-GHz Front-End Integrated on a Multilayer Cellulose-Based Substrate for Doppler Radar Sensors.
    Alimenti F; Palazzi V; Mariotti C; Virili M; Orecchini G; Bonafoni S; Roselli L; Mezzanotte P
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28895914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 77-GHz Six-Port Sensor for Accurate Near-Field Displacement and Doppler Measurements.
    Arab H; Dufour S; Moldovan E; Akyel C; Tatu SO
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30082587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna.
    Di Serio A; Buckley J; Barton J; Newberry R; Rodencal M; Dunlop G; O'Flynn B
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 24 GHz Flexible Antenna for Doppler Radar-Based Human Vital Signs Monitoring.
    Kathuria N; Seet BC
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors.
    Ramos A; Varum T; Matos JN
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution and Large-Detection-Range Virtual Antenna Array for Automotive Radar Applications.
    Abdullah H; Mabrouk M; Abd-Elnaby Kabeel A; Hussein A
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOM/GA-Based Virtual Array for Radar Systems.
    Sultan K; Abdullah H; Abdallah E; El-Hennawy H
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.
    Sani N; Wang X; Granberg H; Andersson Ersman P; Crispin X; Dyreklev P; Engquist I; Gustafsson G; Berggren M
    Sci Rep; 2016 Jun; 6():28921. PubMed ID: 27357006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneously integrated flexible microwave amplifiers on a cellulose nanofibril substrate.
    Zhang H; Li J; Liu D; Min S; Chang TH; Xiong K; Park SH; Kim J; Jung YH; Park J; Lee J; Han J; Katehi L; Cai Z; Gong S; Ma Z
    Nat Commun; 2020 Jun; 11(1):3118. PubMed ID: 32561743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications.
    Dong J; Li Q; Deng L
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstrip Copper Nanowires Antenna Array for Connected Microwave Liquid Sensors.
    Cardillo E; Tavella F; Ampelli C
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications.
    Shah SIH; Lim S
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metamaterial-Integrated High-Gain Rectenna for RF Sensing and Energy Harvesting Applications.
    Lee W; Choi SI; Kim HI; Hwang S; Jeon S; Yoon YK
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of Radiating Elements for Radiofrequency Front-Ends by Screen-Printing Techniques for Internet of Things Applications.
    Picallo I; Klaina H; Lopez-Iturri P; Sánchez A; Méndez-Giménez L; Falcone F
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Graphene-Assembled Film-Based Antenna for Wireless Wearable Sensor with Miniaturized Size and High Sensitivity.
    Zhang J; Song R; Zhao X; Fang R; Zhang B; Qian W; Zhang J; Liu C; He D
    ACS Omega; 2020 Jun; 5(22):12937-12943. PubMed ID: 32548477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Layer Beam Scanning Leaky Wave Antenna for Remote Vital Signs Detection at 60 GHz.
    Mingle S; Kampouridou D; Feresidis A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions.
    Pour Ebrahim M; Sarvi M; Yuce MR
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28257039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Millimeter Wave Multi-Port Interferometric Radar Sensors: Evolution of Fabrication and Characterization Technologies.
    Tatu SO; Moldovan E
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Static Radar Network with Ultra-Wideband Radio-Equipped Devices.
    Ledergerber A; D'Andrea R
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Human Recognition Scheme Using a Doppler Radar Sensor for In-Vehicle Applications.
    Hyun E; Jin YS; Park JH; Yang JR
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.