These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2889610)

  • 1. Primary afferent terminal excitability in the normal and spastic mutant mouse spinal cord.
    Yu YB; Duchen MR; Biscoe TJ
    Eur J Pharmacol; 1987 Sep; 141(3):371-82. PubMed ID: 2889610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation of mouse motoneurones by GABA-mediated primary afferent depolarization.
    Duchen MR
    Brain Res; 1986 Jul; 379(1):182-7. PubMed ID: 3017508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of two benzodiazepines, phenobarbitone, and baclofen on synaptic transmission in the cat cuneate nucleus.
    Polc P; Haefely W
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Aug; 294(2):121-31. PubMed ID: 13311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-aminobutyric acidB, but not gamma-aminobutyric acidA receptor activation, inhibits electrically evoked substance P-like immunoreactivity release from the rat spinal cord in vitro.
    Malcangio M; Bowery NG
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1490-6. PubMed ID: 7690402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord.
    Li Y; Hari K; Lucas-Osma AM; Fenrich KK; Bennett DJ; Hammar I; Jankowska E
    J Neurophysiol; 2020 Jul; 124(1):49-62. PubMed ID: 32459560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of glycine and GABA on primary afferent terminal excitability in mouse spinal cord].
    Yu YB
    Sheng Li Xue Bao; 1989 Dec; 41(6):536-42. PubMed ID: 2626681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick.
    Hyson RL; Reyes AD; Rubel EW
    Brain Res; 1995 Apr; 677(1):117-26. PubMed ID: 7606455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-aminovaleric acid antagonizes the pharmacological actions of baclofen in the central nervous system.
    Schwarz M; Klockgether T; Wüllner U; Turski L; Sontag KH
    Exp Brain Res; 1988; 70(3):618-26. PubMed ID: 3384060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pharmacological study of group I muscle afferent terminals and synaptic excitation in the intermediate nucleus and Clarke's column of the cat spinal cord.
    Curtis DR; Gynther BD; Malik R
    Exp Brain Res; 1986; 64(1):105-13. PubMed ID: 3021503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons.
    Obrietan K; van den Pol AN
    J Neurophysiol; 1998 Mar; 79(3):1360-70. PubMed ID: 9497417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some characteristics of baclofen-evoked responses of primary afferents in frog spinal cord.
    Padjen AL; Mitsoglou GM
    Brain Res; 1990 May; 516(2):201-7. PubMed ID: 2364287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acids and presynaptic inhibition in the rat cuneate nucleus.
    Davidson N; Southwick CA
    J Physiol; 1971 Dec; 219(3):689-708. PubMed ID: 4333671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study.
    Kakinohana O; Hefferan MP; Nakamura S; Kakinohana M; Galik J; Tomori Z; Marsala J; Yaksh TL; Marsala M
    Neuroscience; 2006 Sep; 141(3):1569-83. PubMed ID: 16797137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of gamma-aminobutyric acid on nerve terminal excitability in a slice preparation of cuneate nucleus.
    Hayes AG; Simmonds MA
    Br J Pharmacol; 1978 Jul; 63(3):503-7. PubMed ID: 667494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic strength between motoneurons and terminals of the dorsolateral funiculus is regulated by GABA receptors in the turtle spinal cord.
    Delgado-Lezama R; Aguilar J; Cueva-Rolón R
    J Neurophysiol; 2004 Jan; 91(1):40-7. PubMed ID: 14523075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antispasticity drugs: mechanisms of action.
    Davidoff RA
    Ann Neurol; 1985 Feb; 17(2):107-16. PubMed ID: 2858176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.