These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2889727)

  • 1. Kinetic and equilibrium studies on the interaction of reduced flavoprotein D-amino acid oxidase with pyridine carboxylates.
    Nishina Y; Tojo H; Ushijima H; Shiga K
    J Biochem; 1987 Aug; 102(2):327-32. PubMed ID: 2889727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex formation between reduced D-amino acid oxidase and pyridine carboxylates.
    Nishina Y; Tojo H; Shiga K
    J Biochem; 1986 Mar; 99(3):673-80. PubMed ID: 2872210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex formation between anionic semiquinoid form of a flavoenzyme D-amino acid oxidase and ligands. Stabilizing mechanism of anionic semiquinoid flavoenzyme.
    Nishina Y; Tojo H; Miura R; Miyake Y; Shiga K
    J Biochem; 1988 Nov; 104(5):727-33. PubMed ID: 2906936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH on the interaction of benzoate and D-amino acid oxidase.
    Quay S; Massey V
    Biochemistry; 1977 Jul; 16(15):3348-54. PubMed ID: 19047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate recognition and activation mechanism of D-amino acid oxidase: a study using substrate analogs.
    Nishina Y; Sato K; Miura R; Shiga K
    J Biochem; 2000 Aug; 128(2):213-23. PubMed ID: 10920257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the structures of flavoprotein D-amino acid oxidase purple intermediates. A resonance Raman study.
    Nishina Y; Shiga K; Miura R; Tojo H; Ohta M; Miyake Y; Yamano T; Watari H
    J Biochem; 1983 Dec; 94(6):1979-90. PubMed ID: 6142880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the ligands in charge-transfer complexes of porcine kidney flavoenzyme D-amino acid oxidase in three redox states: a resonance Raman study.
    Nishina Y; Sato K; Shi R; Setoyama C; Miura R; Shiga K
    J Biochem; 2001 Nov; 130(5):637-47. PubMed ID: 11686926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association-dissociation of the flavoprotein hog kidney D-amino acid oxidase. Determination of the monomer-dimer equilibrium constant and the energetics of subunit association.
    Horiike K; Shiga K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 Nov; 82(5):1247-55. PubMed ID: 22539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton release from flavoprotein D-amino acid oxidase on complexation with the zwitterionic ligand, trigonelline.
    Nishina Y; Sato K; Shiga K
    J Biochem; 1990 May; 107(5):726-31. PubMed ID: 1975807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisitation of the βCl-elimination reaction of D-amino acid oxidase: new interpretation of the reaction that sparked flavoprotein dehydrogenation mechanisms.
    Ghisla S; Pollegioni L; Molla G
    J Biol Chem; 2011 Nov; 286(47):40987-98. PubMed ID: 21949129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton release during the reductive half-reaction of D-amino acid oxidase.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Sep; 257(17):9958-62. PubMed ID: 6125513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes combined with charge-transfer interactions are essential for reduction in catalysis by p-hydroxybenzoate hydroxylase.
    Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2003 Sep; 42(38):11234-42. PubMed ID: 14503873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of the purple intermediate of porcine kidney D-amino acid oxidase. Optimization of the oxidative half-reaction through alignment of the product with reduced flavin.
    Mizutani H; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Miura R
    J Biochem; 2000 Jul; 128(1):73-81. PubMed ID: 10876160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical analysis of ligand-induced monomerization and dimerization in the monomer dimer equilibrium of proteins. Application to D-amino acid oxidase.
    Horiike K; Shiga K; Isomoto A; Yamano T
    J Biochem; 1977 Jan; 81(1):179-86. PubMed ID: 14929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of D-amino acid oxidase. IX. Changes in the fluorescence polarization of FAD upon complex formation.
    Yagi K; Tanaka F; Oishi N
    J Biochem; 1975 Feb; 77(2):463-8. PubMed ID: 236295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between D-amino acid oxidase and small molecules.
    Horiike K; Shiga K; Isomoto A; Yamano T
    J Biochem; 1976 Nov; 80(5):1073-83. PubMed ID: 12150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isomerization of delta 1-piperideine-2-carboxylate to delta 2-piperideine-2-carboxylate on complexation with flavoprotein D-amino acid oxidase.
    Nishina Y; Sato K; Shiga K
    J Biochem; 1991 May; 109(5):705-10. PubMed ID: 1680851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the interactions between flavoprotein and quasi-substrates. Circular dichroism spectra of D-amino acid oxidase complexes.
    Shiga K; Horiike K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 May; 81(5):1465-72. PubMed ID: 19436
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.