These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28898066)
1. A Bimetallic Nickel-Gallium Complex Catalyzes CO Cammarota RC; Vollmer MV; Xie J; Ye J; Linehan JC; Burgess SA; Appel AM; Gagliardi L; Lu CC J Am Chem Soc; 2017 Oct; 139(40):14244-14250. PubMed ID: 28898066 [TBL] [Abstract][Full Text] [Related]
2. Rare-Earth Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and Regioselectivity Impacted by the Lewis Acidity and Size of the Support. Ramirez BL; Lu CC J Am Chem Soc; 2020 Mar; 142(11):5396-5407. PubMed ID: 32091218 [TBL] [Abstract][Full Text] [Related]
3. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation. Cammarota RC; Lu CC J Am Chem Soc; 2015 Oct; 137(39):12486-9. PubMed ID: 26378748 [TBL] [Abstract][Full Text] [Related]
4. Making a Splash in Homogeneous CO Wiedner ES; Linehan JC Chemistry; 2018 Nov; 24(64):16964-16971. PubMed ID: 29876973 [TBL] [Abstract][Full Text] [Related]
5. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
7. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions. Chaudhary K; Trivedi M; Masram DT; Kumar A; Kumar G; Husain A; Rath NP Dalton Trans; 2020 Mar; 49(9):2994-3000. PubMed ID: 32083266 [TBL] [Abstract][Full Text] [Related]
8. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. Bernskoetter WH; Hazari N Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247 [TBL] [Abstract][Full Text] [Related]
9. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds. Chakraborty S; Bhattacharya P; Dai H; Guan H Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431 [TBL] [Abstract][Full Text] [Related]
10. Iron catalyzed CO Zhang Y; MacIntosh AD; Wong JL; Bielinski EA; Williard PG; Mercado BQ; Hazari N; Bernskoetter WH Chem Sci; 2015 Jul; 6(7):4291-4299. PubMed ID: 29218198 [TBL] [Abstract][Full Text] [Related]
11. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Chirik PJ Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837 [TBL] [Abstract][Full Text] [Related]
12. Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts. Steiger P; Delmelle R; Foppiano D; Holzer L; Heel A; Nachtegaal M; Kröcher O; Ferri D ChemSusChem; 2017 Jun; 10(11):2505-2517. PubMed ID: 28338286 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of iron complexes catalyzed in the Shen X; Wang W; Wang Q; Liu J; Huang F; Sun C; Yang C; Chen D Phys Chem Chem Phys; 2021 Aug; 23(31):16675-16689. PubMed ID: 34337631 [TBL] [Abstract][Full Text] [Related]
14. How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study. Huang F; Zhang C; Jiang J; Wang ZX; Guan H Inorg Chem; 2011 Apr; 50(8):3816-25. PubMed ID: 21413735 [TBL] [Abstract][Full Text] [Related]
15. Probing the Reaction Mechanism in CO Ren Y; Xin C; Hao Z; Sun H; Bernasek SL; Chen W; Xu GQ ACS Appl Mater Interfaces; 2020 Jan; 12(2):2548-2554. PubMed ID: 31850736 [TBL] [Abstract][Full Text] [Related]
16. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel. Connelly Robinson SJ; Zall CM; Miller DL; Linehan JC; Appel AM Dalton Trans; 2016 Jun; 45(24):10017-23. PubMed ID: 27071366 [TBL] [Abstract][Full Text] [Related]
17. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity. Wen M; Huang F; Lu G; Wang ZX Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841 [TBL] [Abstract][Full Text] [Related]
18. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. Jeletic MS; Mock MT; Appel AM; Linehan JC J Am Chem Soc; 2013 Aug; 135(31):11533-6. PubMed ID: 23869651 [TBL] [Abstract][Full Text] [Related]
19. Determinant Role of Electrogenerated Reactive Nucleophilic Species on Selectivity during Reduction of CO Göttle AJ; Koper MTM J Am Chem Soc; 2018 Apr; 140(14):4826-4834. PubMed ID: 29551059 [TBL] [Abstract][Full Text] [Related]
20. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Li YY; Yu SL; Shen WY; Gao JX Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]