These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28898103)
1. Comparative Study of Secondary Structure and Interactions of the R5 Peptide in Silicon Oxide and Titanium Oxide Coprecipitates Using Solid-State NMR Spectroscopy. Buckle EL; Roehrich A; Vandermoon B; Drobny GP Langmuir; 2017 Oct; 33(40):10517-10524. PubMed ID: 28898103 [TBL] [Abstract][Full Text] [Related]
2. Serine-Lysine Peptides as Mediators for the Production of Titanium Dioxide: Investigating the Effects of Primary and Secondary Structures Using Solid-State NMR Spectroscopy and DFT Calculations. Buckle EL; Lum JS; Roehrich AM; Stote RE; Vandermoon B; Dracinsky M; Filocamo SF; Drobny GP J Phys Chem B; 2018 May; 122(17):4708-4718. PubMed ID: 29595262 [TBL] [Abstract][Full Text] [Related]
3. Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity. Zane AC; Michelet C; Roehrich A; Emani PS; Drobny GP Langmuir; 2014 Jun; 30(24):7152-61. PubMed ID: 24896500 [TBL] [Abstract][Full Text] [Related]
4. Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra. Roeters SJ; Mertig R; Lutz H; Roehrich A; Drobny G; Weidner T J Phys Chem Lett; 2021 Oct; 12(39):9657-9661. PubMed ID: 34586816 [TBL] [Abstract][Full Text] [Related]
5. Solid-State NMR and MD Study of the Structure of the Statherin Mutant SNa15 on Mineral Surfaces. Buckle EL; Prakash A; Bonomi M; Sampath J; Pfaendtner J; Drobny GP J Am Chem Soc; 2019 Feb; 141(5):1998-2011. PubMed ID: 30618247 [TBL] [Abstract][Full Text] [Related]
6. A sequence-function analysis of the silica precipitating silaffin R5 peptide. Lechner CC; Becker CF J Pept Sci; 2014 Feb; 20(2):152-8. PubMed ID: 25975421 [TBL] [Abstract][Full Text] [Related]
7. A REDOR ssNMR Investigation of the Role of an N-Terminus Lysine in R5 Silica Recognition. Ndao M; Goobes G; Emani PS; Drobny GP Langmuir; 2018 Jul; 34(29):8678-8684. PubMed ID: 27039990 [TBL] [Abstract][Full Text] [Related]
8. The Structure of the Diatom Silaffin Peptide R5 within Freestanding Two-Dimensional Biosilica Sheets. Lutz H; Jaeger V; Schmüser L; Bonn M; Pfaendtner J; Weidner T Angew Chem Int Ed Engl; 2017 Jul; 56(28):8277-8280. PubMed ID: 28608998 [TBL] [Abstract][Full Text] [Related]
9. Phase Control of Nanocrystalline Inclusions in Bioprecipitated Titania with a Panel of Mutant Silica-Binding Proteins. Hellner B; Stegmann AE; Pushpavanam K; Bailey MJ; Baneyx F Langmuir; 2020 Jul; 36(29):8503-8510. PubMed ID: 32614593 [TBL] [Abstract][Full Text] [Related]
10. The secondary structure of diatom silaffin peptide R5 determined by two-dimensional infrared spectroscopy. Thomassen AB; Jansen TLC; Weidner T Phys Chem Chem Phys; 2024 Jul; 26(27):18538-18546. PubMed ID: 38888161 [TBL] [Abstract][Full Text] [Related]
11. Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P Zerfaß C; Buchko GW; Shaw WJ; Hobe S; Paulsen H Proteins; 2017 Nov; 85(11):2111-2126. PubMed ID: 28799215 [TBL] [Abstract][Full Text] [Related]
12. Modified silaffin R5 peptides enable encapsulation and release of cargo molecules from biomimetic silica particles. Lechner CC; Becker CF Bioorg Med Chem; 2013 Jun; 21(12):3533-41. PubMed ID: 23643899 [TBL] [Abstract][Full Text] [Related]
13. Structure of peptides on metal oxide surfaces probed by NMR. Mirau PA; Naik RR; Gehring P J Am Chem Soc; 2011 Nov; 133(45):18243-8. PubMed ID: 21981074 [TBL] [Abstract][Full Text] [Related]
14. Molecular Driving Forces in the Self-Association of Silaffin Peptide R5 from MD Simulations. Mao CM; Sampath J; Pfaendtner J Chembiochem; 2024 Jun; 25(11):e202300788. PubMed ID: 38485668 [TBL] [Abstract][Full Text] [Related]
15. Solid state deuterium NMR study of LKα14 peptide aggregation in biosilica. Ferreira HE; Drobny GP Biointerphases; 2017 Jun; 12(2):02D418. PubMed ID: 28655279 [TBL] [Abstract][Full Text] [Related]
16. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Balachandran K; Venckatesh R; Sivaraj R; Rajiv P Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():468-74. PubMed ID: 24682063 [TBL] [Abstract][Full Text] [Related]
17. Peptides from diatoms and grasses harness phosphate ion binding to silica to help regulate biomaterial structure. Adiram-Filiba N; Geiger Y; Kumar S; Keinan-Adamsky K; Elbaum R; Goobes G Acta Biomater; 2020 Aug; 112():286-297. PubMed ID: 32434074 [TBL] [Abstract][Full Text] [Related]
18. Trimethylation of the R5 Silica-Precipitating Peptide Increases Silica Particle Size by Redirecting Orthosilicate Binding. Buckle EL; Sampath J; Michael N; Whedon SD; Leonen CJA; Pfaendtner J; Drobny GP; Chatterjee C Chembiochem; 2020 Nov; 21(22):3208-3211. PubMed ID: 32596917 [TBL] [Abstract][Full Text] [Related]
19. Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements. Lim JH; Sisco P; Mudalige TK; Sánchez-Pomales G; Howard PC; Linder SW J Agric Food Chem; 2015 Apr; 63(12):3144-52. PubMed ID: 25738207 [TBL] [Abstract][Full Text] [Related]
20. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. Pakdel E; Daoud WA J Colloid Interface Sci; 2013 Jul; 401():1-7. PubMed ID: 23602671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]