These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28898255)
1. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. Sulli M; Mandolino G; Sturaro M; Onofri C; Diretto G; Parisi B; Giuliano G PLoS One; 2017; 12(9):e0184143. PubMed ID: 28898255 [TBL] [Abstract][Full Text] [Related]
2. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Wolters AM; Uitdewilligen JG; Kloosterman BA; Hutten RC; Visser RG; van Eck HJ Plant Mol Biol; 2010 Aug; 73(6):659-71. PubMed ID: 20490894 [TBL] [Abstract][Full Text] [Related]
3. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Fernandez-Orozco R; Gallardo-Guerrero L; Hornero-Méndez D Food Chem; 2013 Dec; 141(3):2864-72. PubMed ID: 23871035 [TBL] [Abstract][Full Text] [Related]
4. Regulatory control of high levels of carotenoid accumulation in potato tubers. Zhou X; McQuinn R; Fei Z; Wolters AA; VAN Eck J; Brown C; Giovannoni JJ; Li LI Plant Cell Environ; 2011 Jun; 34(6):1020-1030. PubMed ID: 21388418 [TBL] [Abstract][Full Text] [Related]
5. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. Diretto G; Welsch R; Tavazza R; Mourgues F; Pizzichini D; Beyer P; Giuliano G BMC Plant Biol; 2007 Mar; 7():11. PubMed ID: 17335571 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. Diretto G; Tavazza R; Welsch R; Pizzichini D; Mourgues F; Papacchioli V; Beyer P; Giuliano G BMC Plant Biol; 2006 Jun; 6():13. PubMed ID: 16800876 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Römer S; Lübeck J; Kauder F; Steiger S; Adomat C; Sandmann G Metab Eng; 2002 Oct; 4(4):263-72. PubMed ID: 12646321 [TBL] [Abstract][Full Text] [Related]
8. From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. Kloosterman B; Oortwijn M; uitdeWilligen J; America T; de Vos R; Visser RG; Bachem CW BMC Genomics; 2010 Mar; 11():158. PubMed ID: 20210995 [TBL] [Abstract][Full Text] [Related]
9. Integration of multi-omics data for prediction of phenotypic traits using random forest. Acharjee A; Kloosterman B; Visser RG; Maliepaard C BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):180. PubMed ID: 27295212 [TBL] [Abstract][Full Text] [Related]
10. Carotenogenesis during tuber development and storage in potato. Morris WL; Ducreux L; Griffiths DW; Stewart D; Davies HV; Taylor MA J Exp Bot; 2004 May; 55(399):975-82. PubMed ID: 15047766 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Campbell R; Pont SD; Morris JA; McKenzie G; Sharma SK; Hedley PE; Ramsay G; Bryan GJ; Taylor MA Theor Appl Genet; 2014 Sep; 127(9):1917-33. PubMed ID: 24965888 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional-metabolic networks in beta-carotene-enriched potato tubers: the long and winding road to the Golden phenotype. Diretto G; Al-Babili S; Tavazza R; Scossa F; Papacchioli V; Migliore M; Beyer P; Giuliano G Plant Physiol; 2010 Oct; 154(2):899-912. PubMed ID: 20671108 [TBL] [Abstract][Full Text] [Related]
13. Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes. Ducreux LJ; Morris WL; Prosser IM; Morris JA; Beale MH; Wright F; Shepherd T; Bryan GJ; Hedley PE; Taylor MA J Exp Bot; 2008; 59(15):4219-31. PubMed ID: 18987392 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Ducreux LJ; Morris WL; Hedley PE; Shepherd T; Davies HV; Millam S; Taylor MA J Exp Bot; 2005 Jan; 56(409):81-9. PubMed ID: 15533882 [TBL] [Abstract][Full Text] [Related]
15. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Lopez AB; Van Eck J; Conlin BJ; Paolillo DJ; O'Neill J; Li L J Exp Bot; 2008; 59(2):213-23. PubMed ID: 18256051 [TBL] [Abstract][Full Text] [Related]
16. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Destefano-Beltrán L; Knauber D; Huckle L; Suttle JC Plant Mol Biol; 2006 Jul; 61(4-5):687-97. PubMed ID: 16897484 [TBL] [Abstract][Full Text] [Related]
18. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Li L; Yang Y; Xu Q; Owsiany K; Welsch R; Chitchumroonchokchai C; Lu S; Van Eck J; Deng XX; Failla M; Thannhauser TW Mol Plant; 2012 Mar; 5(2):339-52. PubMed ID: 22155949 [TBL] [Abstract][Full Text] [Related]
19. Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. Duarte-Delgado D; Juyó D; Gebhardt C; Sarmiento F; Mosquera-Vásquez T BMC Genet; 2017 Mar; 18(1):23. PubMed ID: 28279167 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. Diretto G; Al-Babili S; Tavazza R; Papacchioli V; Beyer P; Giuliano G PLoS One; 2007 Apr; 2(4):e350. PubMed ID: 17406674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]