BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28898501)

  • 41. Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa.
    Mettrick KA; Lamont IL
    Mol Microbiol; 2009 Dec; 74(5):1257-71. PubMed ID: 19889096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of ferripyoverdine uptake by Pseudomonas aeruginosa outer membrane transporter FpvA: no diffusion channel formed at any time during ferrisiderophore uptake.
    Nader M; Journet L; Meksem A; Guillon L; Schalk IJ
    Biochemistry; 2011 Apr; 50(13):2530-40. PubMed ID: 21329359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation.
    Overhage J; Schemionek M; Webb JS; Rehm BH
    Appl Environ Microbiol; 2005 Aug; 71(8):4407-13. PubMed ID: 16085831
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence.
    Cerasi M; Liu JZ; Ammendola S; Poe AJ; Petrarca P; Pesciaroli M; Pasquali P; Raffatellu M; Battistoni A
    Metallomics; 2014 Apr; 6(4):845-53. PubMed ID: 24430377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut.
    Behnsen J; Zhi H; Aron AT; Subramanian V; Santus W; Lee MH; Gerner RR; Petras D; Liu JZ; Green KD; Price SL; Camacho J; Hillman H; Tjokrosurjo J; Montaldo NP; Hoover EM; Treacy-Abarca S; Gilston BA; Skaar EP; Chazin WJ; Garneau-Tsodikova S; Lawrenz MB; Perry RD; Nuccio SP; Dorrestein PC; Raffatellu M
    Nat Commun; 2021 Dec; 12(1):7016. PubMed ID: 34853318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation.
    Meyer JM
    J Gen Microbiol; 1992 May; 138(5):951-8. PubMed ID: 1322952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc homeostasis in Pseudomonas.
    Ducret V; Gonzalez D; Perron K
    Biometals; 2023 Aug; 36(4):729-744. PubMed ID: 36472780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial zinc uptake regulator proteins and their regulons.
    Mikhaylina A; Ksibe AZ; Scanlan DJ; Blindauer CA
    Biochem Soc Trans; 2018 Aug; 46(4):983-1001. PubMed ID: 30065104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strategies for Zinc Uptake in
    Wang S; Cheng J; Niu Y; Li P; Zhang X; Lin J
    Front Microbiol; 2021; 12():741873. PubMed ID: 34566943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Critical Role of Zur and SmtB in Zinc Homeostasis of Mycobacterium smegmatis.
    Goethe E; Laarmann K; Lührs J; Jarek M; Meens J; Lewin A; Goethe R
    mSystems; 2020 Apr; 5(2):. PubMed ID: 32317393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification and Characterization of
    Goethe E; Gieseke A; Laarmann K; Lührs J; Goethe R
    J Bacteriol; 2021 May; 203(9):. PubMed ID: 33722846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores.
    Laffont C; Arnoux P
    Metallomics; 2020 Oct; 12(10):1480-1493. PubMed ID: 33084706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of zinc limitation on the transcriptome of Pseudomonas protegens Pf-5.
    Lim CK; Hassan KA; Penesyan A; Loper JE; Paulsen IT
    Environ Microbiol; 2013 Mar; 15(3):702-15. PubMed ID: 22900619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Localized Infections with
    Secli V; Di Biagio C; Martini A; Michetti E; Pacello F; Ammendola S; Battistoni A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674459
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pseudomonas aeruginosa Alters Its Transcriptome Related to Carbon Metabolism and Virulence as a Possible Survival Strategy in Blood from Trauma Patients.
    Elmassry MM; Mudaliar NS; Kottapalli KR; Dissanaike S; Griswold JA; San Francisco MJ; Colmer-Hamood JA; Hamood AN
    mSystems; 2019; 4(4):. PubMed ID: 31086830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Competition for zinc binding in the host-pathogen interaction.
    Cerasi M; Ammendola S; Battistoni A
    Front Cell Infect Microbiol; 2013; 3():108. PubMed ID: 24400228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioinformatic Mapping of Opine-Like Zincophore Biosynthesis in Bacteria.
    Morey JR; Kehl-Fie TE
    mSystems; 2020 Aug; 5(4):. PubMed ID: 32817386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global Analysis of the Zinc Homeostasis Network in
    Ducret V; Abdou M; Goncalves Milho C; Leoni S; Martin-Pelaud O; Sandoz A; Segovia Campos I; Tercier-Waeber ML; Valentini M; Perron K
    Front Microbiol; 2021; 12():739988. PubMed ID: 34690984
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Zhang J; Zhao T; Yang R; Siridechakorn I; Wang S; Guo Q; Bai Y; Shen HC; Lei X
    Chem Sci; 2019 Jul; 10(27):6635-6641. PubMed ID: 31367316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline.
    Lhospice S; Gomez NO; Ouerdane L; Brutesco C; Ghssein G; Hajjar C; Liratni A; Wang S; Richaud P; Bleves S; Ball G; Borezée-Durant E; Lobinski R; Pignol D; Arnoux P; Voulhoux R
    Sci Rep; 2017 Dec; 7(1):17132. PubMed ID: 29214991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.