These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28898758)

  • 1. Modular flow chamber for engineering bone marrow architecture and function.
    Di Buduo CA; Soprano PM; Tozzi L; Marconi S; Auricchio F; Kaplan DL; Balduini A
    Biomaterials; 2017 Nov; 146():60-71. PubMed ID: 28898758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production.
    Tozzi L; Laurent PA; Di Buduo CA; Mu X; Massaro A; Bretherton R; Stoppel W; Kaplan DL; Balduini A
    Biomaterials; 2018 Sep; 178():122-133. PubMed ID: 29920404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies.
    Di Buduo CA; Wray LS; Tozzi L; Malara A; Chen Y; Ghezzi CE; Smoot D; Sfara C; Antonelli A; Spedden E; Bruni G; Staii C; De Marco L; Magnani M; Kaplan DL; Balduini A
    Blood; 2015 Apr; 125(14):2254-64. PubMed ID: 25575540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk-Based 3D Porous Scaffolds for Tissue Engineering.
    Xiao M; Yao J; Shao Z; Chen X
    ACS Biomater Sci Eng; 2024 May; 10(5):2827-2840. PubMed ID: 38690985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Tissue Models for Studying Ex Vivo Megakaryocytopoiesis and Platelet Production.
    Di Buduo CA; Abbonante V; Tozzi L; Kaplan DL; Balduini A
    Methods Mol Biol; 2018; 1812():177-193. PubMed ID: 30171579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk scaffolds with tunable mechanical capability for cell differentiation.
    Bai S; Han H; Huang X; Xu W; Kaplan DL; Zhu H; Lu Q
    Acta Biomater; 2015 Jul; 20():22-31. PubMed ID: 25858557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone tissue engineering with premineralized silk scaffolds.
    Kim HJ; Kim UJ; Kim HS; Li C; Wada M; Leisk GG; Kaplan DL
    Bone; 2008 Jun; 42(6):1226-34. PubMed ID: 18387349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human bone marrow stromal cell responses on electrospun silk fibroin mats.
    Jin HJ; Chen J; Karageorgiou V; Altman GH; Kaplan DL
    Biomaterials; 2004 Mar; 25(6):1039-47. PubMed ID: 14615169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials fabrication from Bombyx mori silk fibroin.
    Rockwood DN; Preda RC; YĆ¼cel T; Wang X; Lovett ML; Kaplan DL
    Nat Protoc; 2011 Sep; 6(10):1612-31. PubMed ID: 21959241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.
    Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP
    Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress and prospect of electrospun silk fibroin in construction of tissue-engineering scaffold].
    Chen L; Zhu Y; Li Y; Liu Y; Yu J
    Sheng Wu Gong Cheng Xue Bao; 2011 Jun; 27(6):831-7. PubMed ID: 22034811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y; Rudym DD; Walsh A; Abrahamsen L; Kim HJ; Kim HS; Kirker-Head C; Kaplan DL
    Biomaterials; 2008; 29(24-25):3415-28. PubMed ID: 18502501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.
    Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W
    Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.
    Correia C; Bhumiratana S; Yan LP; Oliveira AL; Gimble JM; Rockwood D; Kaplan DL; Sousa RA; Reis RL; Vunjak-Novakovic G
    Acta Biomater; 2012 Jul; 8(7):2483-92. PubMed ID: 22421311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned Silk Sponge Fabrication and Perfusion Culture for Scalable Proximal Tubule Tissue Engineering.
    Szymkowiak S; Sandler N; Kaplan DL
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10768-10777. PubMed ID: 33621042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.
    Li DW; He J; He FL; Liu YL; Liu YY; Ye YJ; Deng X; Yin DC
    J Biomater Appl; 2018 Apr; 32(9):1164-1173. PubMed ID: 29471713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering.
    Mobini S; Hoyer B; Solati-Hashjin M; Lode A; Nosoudi N; Samadikuchaksaraei A; Gelinsky M
    J Biomed Mater Res A; 2013 Aug; 101(8):2392-404. PubMed ID: 23436754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.