BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28899034)

  • 1. Genome-scale modeling of yeast: chronology, applications and critical perspectives.
    Lopes H; Rocha I
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28899034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale modeling of yeast metabolism: retrospectives and perspectives.
    Chen Y; Li F; Nielsen J
    FEMS Yeast Res; 2022 Feb; 22(1):. PubMed ID: 35094064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a genome-scale metabolic model for the lager hybrid yeast
    Timouma S; Balarezo-Cisneros LN; Schwartz J-M; Delneri D
    mSystems; 2024 Jun; 9(6):e0042924. PubMed ID: 38819150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale metabolic models of Saccharomyces cerevisiae.
    Nookaew I; Olivares-Hernández R; Bhumiratana S; Nielsen J
    Methods Mol Biol; 2011; 759():445-63. PubMed ID: 21863502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories.
    Maia P; Rocha M; Rocha I
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):45-67. PubMed ID: 26609052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fifteen years of large scale metabolic modeling of yeast: developments and impacts.
    Osterlund T; Nookaew I; Nielsen J
    Biotechnol Adv; 2012; 30(5):979-88. PubMed ID: 21846501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications.
    Lian J; Mishra S; Zhao H
    Metab Eng; 2018 Nov; 50():85-108. PubMed ID: 29702275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale metabolic network models: from first-generation to next-generation.
    Ye C; Wei X; Shi T; Sun X; Xu N; Gao C; Zou W
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):4907-4920. PubMed ID: 35829788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering tolerance to industrially relevant stress factors in yeast cell factories.
    Deparis Q; Claes A; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28586408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species.
    Domenzain I; Li F; Kerkhoven EJ; Siewers V
    FEMS Yeast Res; 2021 Mar; 21(1):. PubMed ID: 33428734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale modeling for metabolic engineering.
    Simeonidis E; Price ND
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):327-38. PubMed ID: 25578304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    ACS Synth Biol; 2020 Sep; 9(9):2228-2238. PubMed ID: 32794766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical guide to genome-scale metabolic models and their analysis.
    Santos F; Boele J; Teusink B
    Methods Enzymol; 2011; 500():509-32. PubMed ID: 21943912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in the development of constraint-based genome-scale metabolic network models].
    Zhou J; Liu P; Xia J; Zhuang Y
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1526-1540. PubMed ID: 34085441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges.
    Chen Y; Li G; Nielsen J
    Methods Mol Biol; 2019; 2049():329-345. PubMed ID: 31602620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative Tools and Strategies for Optimizing Yeast Cell Factories.
    Guirimand G; Kulagina N; Papon N; Hasunuma T; Courdavault V
    Trends Biotechnol; 2021 May; 39(5):488-504. PubMed ID: 33008642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.