BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28899034)

  • 21. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
    Da Silva NA; Srikrishnan S
    FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emergence of Orchestrated and Dynamic Metabolism of
    Nguyen V; Li Y; Lu T
    ACS Synth Biol; 2024 May; 13(5):1442-1453. PubMed ID: 38657170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites.
    Wang G; Kell DB; Borodina I
    Essays Biochem; 2021 Jul; 65(2):277-291. PubMed ID: 34061167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multidimensional Metabolic Engineering for Constructing Efficient Cell Factories.
    Liu J; Hou J
    Trends Biotechnol; 2020 May; 38(5):468-469. PubMed ID: 32302578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MESSI: metabolic engineering target selection and best strain identification tool.
    Kang K; Li J; Lim BL; Panagiotou G
    Database (Oxford); 2015; 2015():. PubMed ID: 26255308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An overview of bioinformatics methods for modeling biological pathways in yeast.
    Hou J; Acharya L; Zhu D; Cheng J
    Brief Funct Genomics; 2016 Mar; 15(2):95-108. PubMed ID: 26476430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling.
    Shen F; Sun R; Yao J; Li J; Liu Q; Price ND; Liu C; Wang Z
    PLoS Comput Biol; 2019 Mar; 15(3):e1006835. PubMed ID: 30849073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in construction and regulation of yeast cell factories.
    Jiao X; Gu Y; Zhou P; Yu H; Ye L
    World J Microbiol Biotechnol; 2022 Feb; 38(4):57. PubMed ID: 35174424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations.
    Castillo S; Patil KR; Jouhten P
    Prog Mol Subcell Biol; 2019; 58():111-133. PubMed ID: 30911891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system.
    Lian J; HamediRad M; Hu S; Zhao H
    Nat Commun; 2017 Nov; 8(1):1688. PubMed ID: 29167442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.
    Heavner BD; Price ND
    PLoS Comput Biol; 2015 Nov; 11(11):e1004530. PubMed ID: 26566239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.
    Marques WL; Raghavendran V; Stambuk BU; Gombert AK
    FEMS Yeast Res; 2016 Feb; 16(1):fov107. PubMed ID: 26658003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The yeastGemMap: A process diagram to assist yeast systems-metabolic studies.
    Caspeta L; Kerkhoven EJ; Martinez A; Nielsen J
    Biotechnol Bioeng; 2021 Dec; 118(12):4800-4814. PubMed ID: 34569624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism.
    Lu H; Li F; Sánchez BJ; Zhu Z; Li G; Domenzain I; Marcišauskas S; Anton PM; Lappa D; Lieven C; Beber ME; Sonnenschein N; Kerkhoven EJ; Nielsen J
    Nat Commun; 2019 Aug; 10(1):3586. PubMed ID: 31395883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-Scale Modeling of Thermophilic Microorganisms.
    Dahal S; Poudel S; Thompson RA
    Adv Biochem Eng Biotechnol; 2017; 160():103-119. PubMed ID: 27913830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast metabolic chassis designs for diverse biotechnological products.
    Jouhten P; Boruta T; Andrejev S; Pereira F; Rocha I; Patil KR
    Sci Rep; 2016 Jul; 6():29694. PubMed ID: 27430744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-scale metabolic network models for industrial microorganisms metabolic engineering: Current advances and future prospects.
    Gong Z; Chen J; Jiao X; Gong H; Pan D; Liu L; Zhang Y; Tan T
    Biotechnol Adv; 2024; 72():108319. PubMed ID: 38280495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.