These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28899034)

  • 41. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Strategies for regulating multiple genes in microbial cell factories].
    Jiang T; Li L; Ma C; Xu P
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1419-25. PubMed ID: 21218630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level.
    Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Jul; 37(12):1717-1723. PubMed ID: 33245091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism.
    Zhao Y; Zhang Y; Nielsen J; Liu Z
    Biotechnol Bioeng; 2021 May; 118(5):2043-2052. PubMed ID: 33605428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in yeast genome engineering.
    David F; Siewers V
    FEMS Yeast Res; 2015 Feb; 15(1):1-14. PubMed ID: 25154295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Model reduction of genome-scale metabolic models as a basis for targeted kinetic models.
    van Rosmalen RP; Smith RW; Martins Dos Santos VAP; Fleck C; Suarez-Diez M
    Metab Eng; 2021 Mar; 64():74-84. PubMed ID: 33486094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network.
    Heavner BD; Smallbone K; Barker B; Mendes P; Walker LP
    BMC Syst Biol; 2012 Jun; 6():55. PubMed ID: 22663945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstruction of Genome-Scale Metabolic Model for Hansenula polymorpha Using RAVEN.
    Zorrilla F; Kerkhoven EJ
    Methods Mol Biol; 2022; 2513():271-290. PubMed ID: 35781211
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Yeast Systems Biology: Model Organism and Cell Factory.
    Nielsen J
    Biotechnol J; 2019 Sep; 14(9):e1800421. PubMed ID: 30925027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas9 advances engineering of microbial cell factories.
    Jakočiūnas T; Jensen MK; Keasling JD
    Metab Eng; 2016 Mar; 34():44-59. PubMed ID: 26707540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Application of metabolic network model to analyze intracellular metabolism of industrial microorganisms].
    Ye C; Xu N; Chen X; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1901-1913. PubMed ID: 31668037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae.
    Hou J; Tyo KE; Liu Z; Petranovic D; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):491-510. PubMed ID: 22533807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-scale metabolic networks.
    Terzer M; Maynard ND; Covert MW; Stelling J
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):285-297. PubMed ID: 20835998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Precise control of SCRaMbLE in synthetic haploid and diploid yeast.
    Jia B; Wu Y; Li BZ; Mitchell LA; Liu H; Pan S; Wang J; Zhang HR; Jia N; Li B; Shen M; Xie ZX; Liu D; Cao YX; Li X; Zhou X; Qi H; Boeke JD; Yuan YJ
    Nat Commun; 2018 May; 9(1):1933. PubMed ID: 29789567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Model-based identification of drug targets that revert disrupted metabolism and its application to ageing.
    Yizhak K; Gabay O; Cohen H; Ruppin E
    Nat Commun; 2013; 4():2632. PubMed ID: 24153335
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosensors design in yeast and applications in metabolic engineering.
    Qiu C; Zhai H; Hou J
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.