These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28899034)

  • 61. Biosensors design in yeast and applications in metabolic engineering.
    Qiu C; Zhai H; Hou J
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genome-scale integrative data analysis and modeling of dynamic processes in yeast.
    Schwartz JM; Gaugain C
    Methods Mol Biol; 2011; 759():427-43. PubMed ID: 21863501
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Network thermodynamic curation of human and yeast genome-scale metabolic models.
    Martínez VS; Quek LE; Nielsen LK
    Biophys J; 2014 Jul; 107(2):493-503. PubMed ID: 25028891
    [TBL] [Abstract][Full Text] [Related]  

  • 65. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data.
    Cesur MF; Çakır T; Pir P
    mSystems; 2022 Jun; 7(3):e0134721. PubMed ID: 35695574
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Retrosynthetic design of heterologous pathways.
    Carbonell P; Planson AG; Faulon JL
    Methods Mol Biol; 2013; 985():149-73. PubMed ID: 23417804
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.
    Savoglidis G; da Silveira Dos Santos AX; Riezman I; Angelino P; Riezman H; Hatzimanikatis V
    Metab Eng; 2016 Sep; 37():46-62. PubMed ID: 27113440
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Next-Generation Genome-Scale Models Incorporating Multilevel 'Omics Data: From Yeast to Human.
    Çakır T; Kökrek E; Avşar G; Abdik E; Pir P
    Methods Mol Biol; 2019; 2049():347-363. PubMed ID: 31602621
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genome-scale modeling of the protein secretory machinery in yeast.
    Feizi A; Österlund T; Petranovic D; Bordel S; Nielsen J
    PLoS One; 2013; 8(5):e63284. PubMed ID: 23667601
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks.
    Klamt S; Mahadevan R; von Kamp A
    BMC Bioinformatics; 2020 Nov; 21(1):510. PubMed ID: 33167871
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae.
    Brochado AR; Patil KR
    Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 75. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.
    Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J
    Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain.
    Nicolaï T; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2021 Jun; 20(1):114. PubMed ID: 34098954
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.
    Oud B; van Maris AJ; Daran JM; Pronk JT
    FEMS Yeast Res; 2012 Mar; 12(2):183-96. PubMed ID: 22152095
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic function-based normalization improves transcriptome data-driven reduction of genome-scale metabolic models.
    Jalili M; Scharm M; Wolkenhauer O; Salehzadeh-Yazdi A
    NPJ Syst Biol Appl; 2023 May; 9(1):15. PubMed ID: 37210409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.