These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28899034)

  • 81. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae.
    Münzner U; Klipp E; Krantz M
    Nat Commun; 2019 Mar; 10(1):1308. PubMed ID: 30899000
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.
    Zhang Y; Nielsen J; Liu Z
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29096021
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.
    Cotten C; Reed JL
    Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.
    Otero JM; Vongsangnak W; Asadollahi MA; Olivares-Hernandes R; Maury J; Farinelli L; Barlocher L; Osterås M; Schalk M; Clark A; Nielsen J
    BMC Genomics; 2010 Dec; 11():723. PubMed ID: 21176163
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Modular, synthetic chromosomes as new tools for large scale engineering of metabolism.
    Postma ED; Hassing EJ; Mangkusaputra V; Geelhoed J; de la Torre P; van den Broek M; Mooiman C; Pabst M; Daran JM; Daran-Lapujade P
    Metab Eng; 2022 Jul; 72():1-13. PubMed ID: 35051627
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica.
    Loira N; Dulermo T; Nicaud JM; Sherman DJ
    BMC Syst Biol; 2012 May; 6():35. PubMed ID: 22558935
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.
    Sánchez BJ; Zhang C; Nilsson A; Lahtvee PJ; Kerkhoven EJ; Nielsen J
    Mol Syst Biol; 2017 Aug; 13(8):935. PubMed ID: 28779005
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Saccharomyces cerevisiae as a Heterologous Host for Natural Products.
    Otto M; Liu D; Siewers V
    Methods Mol Biol; 2022; 2489():333-367. PubMed ID: 35524059
    [TBL] [Abstract][Full Text] [Related]  

  • 94. redLips: a comprehensive mechanistic model of the lipid metabolic network of yeast.
    Tsouka S; Hatzimanikatis V
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32068831
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Systems-level engineering of nonfermentative metabolism in yeast.
    Kennedy CJ; Boyle PM; Waks Z; Silver PA
    Genetics; 2009 Sep; 183(1):385-97. PubMed ID: 19564482
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Building better yeast.
    Nat Commun; 2018 May; 9(1):1939. PubMed ID: 29789549
    [TBL] [Abstract][Full Text] [Related]  

  • 98. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.
    HamediRad M; Lian J; Li H; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1552-1560. PubMed ID: 29460286
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Genome-scale metabolic models of yeast, methods for their reconstruction, and other applications.
    Bordel S
    Methods Mol Biol; 2014; 1152():269-79. PubMed ID: 24744039
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Metabolic network modeling with model organisms.
    Yilmaz LS; Walhout AJ
    Curr Opin Chem Biol; 2017 Feb; 36():32-39. PubMed ID: 28088694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.