These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 28899203)

  • 1. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment.
    Keleku-Lukwete N; Suzuki M; Yamamoto M
    Antioxid Redox Signal; 2018 Dec; 29(17):1746-1755. PubMed ID: 28899203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation.
    Lu MC; Zhao J; Liu YT; Liu T; Tao MM; You QD; Jiang ZY
    Redox Biol; 2019 Sep; 26():101266. PubMed ID: 31279986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amelioration of Oxidative Stress in Caco-2 Cells Treated with Pro-inflammatory Proteins by Chlorogenic Acid Isomers via Activation of the Nrf2-Keap1-ARE-Signaling Pathway.
    Liang N; Kitts DD
    J Agric Food Chem; 2018 Oct; 66(42):11008-11017. PubMed ID: 30259744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update.
    Lu MC; Ji JA; Jiang ZY; You QD
    Med Res Rev; 2016 Sep; 36(5):924-63. PubMed ID: 27192495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress.
    Suzuki T; Yamamoto M
    J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anti-inflammatory and anti-oxidative effect of a classical hypnotic bromovalerylurea mediated by the activation of NRF2.
    Takeda H; Nakajima Y; Yamaguchi T; Watanabe I; Miyoshi S; Nagashio K; Sekine H; Motohashi H; Yano H; Tanaka J
    J Biochem; 2023 Jul; 174(2):131-142. PubMed ID: 37039781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis.
    Sun X; Zuo H; Liu C; Yang Y
    Int J Mol Med; 2016 Oct; 38(4):1303-11. PubMed ID: 27573160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1.
    Sun W; Liu X; Zhang H; Song Y; Li T; Liu X; Liu Y; Guo L; Wang F; Yang T; Guo W; Wu J; Jin H; Wu H
    Free Radic Biol Med; 2017 Jul; 108():840-857. PubMed ID: 28457936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-Are signaling pathway.
    Li B; Jiang T; Liu H; Miao Z; Fang D; Zheng L; Zhao J
    J Cell Physiol; 2018 Jan; 234(1):561-571. PubMed ID: 30071128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line.
    Li H; Shen Y; Xiao H; Sun W
    Pathol Res Pract; 2021 Sep; 225():153576. PubMed ID: 34391968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study.
    Shanmugam T; Selvaraj M; Poomalai S
    Int Immunopharmacol; 2016 Oct; 39():128-139. PubMed ID: 27472294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1.
    Hashimoto K; Simmons AN; Kajino-Sakamoto R; Tsuji Y; Ninomiya-Tsuji J
    Antioxid Redox Signal; 2016 Dec; 25(17):953-964. PubMed ID: 27245349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis.
    Yamamoto M; Kensler TW; Motohashi H
    Physiol Rev; 2018 Jul; 98(3):1169-1203. PubMed ID: 29717933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of pyrroloquinoline quinine against oxidative stress-induced cellular senescence and inflammation in human renal tubular epithelial cells via Keap1/Nrf2 signaling pathway.
    Wang Z; Han N; Zhao K; Li Y; Chi Y; Wang B
    Int Immunopharmacol; 2019 Jul; 72():445-453. PubMed ID: 31035086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The KEAP1-NRF2 System and Neurodegenerative Diseases.
    Uruno A; Yamamoto M
    Antioxid Redox Signal; 2023 May; 38(13-15):974-988. PubMed ID: 36930785
    [No Abstract]   [Full Text] [Related]  

  • 17. Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions.
    Lu MC; Shao HL; Liu T; You QD; Jiang ZY
    Eur J Med Chem; 2020 Dec; 207():112734. PubMed ID: 32866756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling.
    Kaur G; Sharma A; Bhatnagar A
    Autoimmunity; 2021 Nov; 54(7):385-397. PubMed ID: 34415206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases.
    Guo Z; Mo Z
    J Tissue Eng Regen Med; 2020 Jun; 14(6):869-883. PubMed ID: 32336035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions.
    Ren L; Zhan P; Wang Q; Wang C; Liu Y; Yu Z; Zhang S
    Biochem Biophys Res Commun; 2019 Jun; 514(3):691-698. PubMed ID: 31078267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.