These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28899232)

  • 1. RNA-Seq reveals a central role for lectin, C1q and von Willebrand factor A domains in the defensive glue of a terrestrial slug.
    Smith AM; Papaleo C; Reid CW; Bliss JM
    Biofouling; 2017 Oct; 33(9):741-754. PubMed ID: 28899232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue.
    Braun M; Menges M; Opoku F; Smith AM
    J Exp Biol; 2013 Apr; 216(Pt 8):1475-83. PubMed ID: 23264483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-binding proteins and cross-linking in the defensive glue of the slug
    Christoforo C; Fleming B; Zeitler M; Haws H; Smith AM
    J R Soc Interface; 2022 Nov; 19(196):20220611. PubMed ID: 36415975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the adhesive secreting cells of
    Smith AM; Flammang P
    Soft Matter; 2024 Jun; 20(24):4669-4680. PubMed ID: 38563822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-network gels and the toughness of terrestrial slug glue.
    Wilks AM; Rabice SR; Garbacz HS; Harro CC; Smith AM
    J Exp Biol; 2015 Oct; 218(Pt 19):3128-37. PubMed ID: 26276864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasticity and energy dissipation in the double network hydrogel adhesive of the slug Arion subfuscus.
    Fung TM; Gallego Lazo C; Smith AM
    Philos Trans R Soc Lond B Biol Sci; 2019 Oct; 374(1784):20190201. PubMed ID: 31495311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong, Non-specific Adhesion Using C-Lectin Heterotrimers in a Molluscan Defensive Secretion.
    Smith AM; Huynh P; Griffin S; Baughn M; Monka P
    Integr Comp Biol; 2021 Oct; 61(4):1440-1449. PubMed ID: 34048555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs.
    Bradshaw A; Salt M; Bell A; Zeitler M; Litra N; Smith AM
    J Exp Biol; 2011 May; 214(Pt 10):1699-706. PubMed ID: 21525316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.
    Smith AM; Robinson TM; Salt MD; Hamilton KS; Silvia BE; Blasiak R
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Feb; 152(2):110-7. PubMed ID: 18952190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of metals in molluscan adhesive gels.
    Werneke SW; Swann C; Farquharson LA; Hamilton KS; Smith AM
    J Exp Biol; 2007 Jun; 210(Pt 12):2137-45. PubMed ID: 17562887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal secretions of terrestrial flatworms and slugs: Lehmannia valentiana mucus contains matrilin-like proteins.
    Li D; Graham LD
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Nov; 148(3):231-44. PubMed ID: 17644381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lectin-like molecules in transcriptome of Littorina littorea hemocytes.
    Gorbushin AM; Borisova EA
    Dev Comp Immunol; 2015 Jan; 48(1):210-20. PubMed ID: 25451301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Von Willebrand Factor Interacts with Surface-Bound C1q and Induces Platelet Rolling.
    Kölm R; Schaller M; Roumenina LT; Niemiec I; Kremer Hovinga JA; Khanicheh E; Kaufmann BA; Hopfer H; Trendelenburg M
    J Immunol; 2016 Nov; 197(9):3669-3679. PubMed ID: 27698012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of molluscan glue proteins on gel mechanics.
    Pawlicki JM; Pease LB; Pierce CM; Startz TP; Zhang Y; Smith AM
    J Exp Biol; 2004 Mar; 207(Pt 7):1127-35. PubMed ID: 14978055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The lectin-like activity of human C1q and its implication in DNA and apoptotic cell recognition.
    Païdassi H; Tacnet-Delorme P; Lunardi T; Arlaud GJ; Thielens NM; Frachet P
    FEBS Lett; 2008 Sep; 582(20):3111-6. PubMed ID: 18703056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation.
    Serrano SMT; Wang D; Shannon JD; Pinto AFM; Polanowska-Grabowska RK; Fox JW
    FEBS J; 2007 Jul; 274(14):3611-3621. PubMed ID: 17578514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complement and the multifaceted functions of VWA and integrin I domains.
    Springer TA
    Structure; 2006 Nov; 14(11):1611-6. PubMed ID: 17098186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-type galactoside-binding lectin from Bothrops jararaca venom: comparison of its structure and function with those of botrocetin.
    Ozeki Y; Matsui T; Hamako J; Suzuki M; Fujimura Y; Yoshida E; Nishida S; Titani K
    Arch Biochem Biophys; 1994 Jan; 308(1):306-10. PubMed ID: 8311467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of snake venom toxins interacting with human von Willebrand factor.
    Matsui T; Hamako J
    Toxicon; 2005 Jun; 45(8):1075-87. PubMed ID: 15922776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel C1q family member with fucose-binding activity from surfperch, Neoditrema ransonnetii (Perciformes, Embiotocidae).
    Nakamura O; Wada Y; Namai F; Saito E; Araki K; Yamamoto A; Tsutsui S
    Fish Shellfish Immunol; 2009 Dec; 27(6):714-20. PubMed ID: 19772923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.