These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 28899353)
1. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. Zhou J; Sears RL; Xing X; Zhang B; Li D; Rockweiler NB; Jang HS; Choudhary MNK; Lee HJ; Lowdon RF; Arand J; Tabers B; Gu CC; Cicero TJ; Wang T BMC Genomics; 2017 Sep; 18(1):724. PubMed ID: 28899353 [TBL] [Abstract][Full Text] [Related]
2. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. Zhong X New Phytol; 2016 Apr; 210(1):76-80. PubMed ID: 26137858 [TBL] [Abstract][Full Text] [Related]
3. Fetal testis organ culture reproduces the dynamics of epigenetic reprogramming in rat gonocytes. Rwigemera A; Joao F; Delbes G Epigenetics Chromatin; 2017; 10():19. PubMed ID: 28413450 [TBL] [Abstract][Full Text] [Related]
4. Uncovering the transcriptomic and epigenomic landscape of nicotinic receptor genes in non-neuronal tissues. Zhang B; Madden P; Gu J; Xing X; Sankar S; Flynn J; Kroll K; Wang T BMC Genomics; 2017 Jun; 18(1):439. PubMed ID: 28583088 [TBL] [Abstract][Full Text] [Related]
5. Comparative epigenomic annotation of regulatory DNA. Xiao S; Xie D; Cao X; Yu P; Xing X; Chen CC; Musselman M; Xie M; West FD; Lewin HA; Wang T; Zhong S Cell; 2012 Jun; 149(6):1381-92. PubMed ID: 22682255 [TBL] [Abstract][Full Text] [Related]
6. DNA methylation profile: a composer-, conductor-, and player-orchestrated Mammalian genome consisting of genes and transposable genetic elements. Yagi S; Hirosawa M; Shiota K J Reprod Dev; 2012; 58(3):265-73. PubMed ID: 22790869 [TBL] [Abstract][Full Text] [Related]
7. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse. Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522 [TBL] [Abstract][Full Text] [Related]
8. DNA methylation patterns of transcription factor binding regions characterize their functional and evolutionary contexts. Rimoldi M; Wang N; Zhang J; Villar D; Odom DT; Taipale J; Flicek P; Roller M Genome Biol; 2024 Jun; 25(1):146. PubMed ID: 38844976 [TBL] [Abstract][Full Text] [Related]
9. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs. Wan J; Oliver VF; Zhu H; Zack DJ; Qian J; Merbs SL Nucleic Acids Res; 2013 Oct; 41(18):8503-14. PubMed ID: 23887936 [TBL] [Abstract][Full Text] [Related]
10. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types. Yan H; Zhang D; Liu H; Wei Y; Lv J; Wang F; Zhang C; Wu Q; Su J; Zhang Y Sci Rep; 2015 Feb; 5():8410. PubMed ID: 25673498 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq. Li J; Li R; Wang Y; Hu X; Zhao Y; Li L; Feng C; Gu X; Liang F; Lamont SJ; Hu S; Zhou H; Li N BMC Genomics; 2015 Oct; 16():851. PubMed ID: 26497311 [TBL] [Abstract][Full Text] [Related]
12. The interplay between DNA methylation and sequence divergence in recent human evolution. Hernando-Herraez I; Heyn H; Fernandez-Callejo M; Vidal E; Fernandez-Bellon H; Prado-Martinez J; Sharp AJ; Esteller M; Marques-Bonet T Nucleic Acids Res; 2015 Sep; 43(17):8204-14. PubMed ID: 26170231 [TBL] [Abstract][Full Text] [Related]
13. DNA methylation profiling in human Huntington's disease brain. De Souza RA; Islam SA; McEwen LM; Mathelier A; Hill A; Mah SM; Wasserman WW; Kobor MS; Leavitt BR Hum Mol Genet; 2016 May; 25(10):2013-2030. PubMed ID: 26953320 [TBL] [Abstract][Full Text] [Related]
14. Role of CpG context and content in evolutionary signatures of brain DNA methylation. Xin Y; O'Donnell AH; Ge Y; Chanrion B; Milekic M; Rosoklija G; Stankov A; Arango V; Dwork AJ; Gingrich JA; Haghighi FG Epigenetics; 2011 Nov; 6(11):1308-18. PubMed ID: 22048252 [TBL] [Abstract][Full Text] [Related]
15. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Sundaram V; Cheng Y; Ma Z; Li D; Xing X; Edge P; Snyder MP; Wang T Genome Res; 2014 Dec; 24(12):1963-76. PubMed ID: 25319995 [TBL] [Abstract][Full Text] [Related]
16. DNA methylation and evolution of duplicate genes. Keller TE; Yi SV Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5932-7. PubMed ID: 24711408 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of the targeted capture Methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment. Hing B; Ramos E; Braun P; McKane M; Jancic D; Tamashiro KL; Lee RS; Michaelson JJ; Druley TE; Potash JB Epigenetics; 2015; 10(7):581-96. PubMed ID: 25985232 [TBL] [Abstract][Full Text] [Related]
18. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. Horvath MM; Wang X; Resnick MA; Bell DA PLoS Genet; 2007 Jul; 3(7):e127. PubMed ID: 17677004 [TBL] [Abstract][Full Text] [Related]
19. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Huang YT; Chu S; Loucks EB; Lin CL; Eaton CB; Buka SL; Kelsey KT Epigenetics; 2016 Mar; 11(3):227-36. PubMed ID: 26891033 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]