BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 28899391)

  • 1. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Zhao X
    FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production].
    Ying M; Ban R
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):23-7. PubMed ID: 16579459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis.
    Wang G; Bai L; Wang Z; Shi T; Chen T; Zhao X
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1893-900. PubMed ID: 24477882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation.
    You J; Yang C; Pan X; Hu M; Du Y; Osire T; Yang T; Rao Z
    Bioresour Technol; 2021 Aug; 333():125228. PubMed ID: 33957462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis.
    Zamboni N; Fischer E; Muffler A; Wyss M; Hohmann HP; Sauer U
    Biotechnol Bioeng; 2005 Jan; 89(2):219-32. PubMed ID: 15584023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic fluxes in riboflavin-producing Bacillus subtilis.
    Sauer U; Hatzimanikatis V; Bailey JE; Hochuli M; Szyperski T; Wüthrich K
    Nat Biotechnol; 1997 May; 15(5):448-52. PubMed ID: 9131624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Shi S; Zhao X
    Biotechnol Lett; 2006 Oct; 28(20):1667-72. PubMed ID: 16912926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the anaerobic metabolism in Bacillus subtilis.
    Härtig E; Jahn D
    Adv Microb Physiol; 2012; 61():195-216. PubMed ID: 23046954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis.
    Xu J; Wang C; Ban R
    Lett Appl Microbiol; 2022 Jan; 74(1):78-83. PubMed ID: 34704264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production.
    Shi S; Chen T; Zhang Z; Chen X; Zhao X
    Metab Eng; 2009; 11(4-5):243-52. PubMed ID: 19446032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of ResE phosphatase activity in down-regulation of ResD-controlled genes in Bacillus subtilis during aerobic growth.
    Nakano MM; Zhu Y
    J Bacteriol; 2001 Mar; 183(6):1938-44. PubMed ID: 11222591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometric growth model for riboflavin-producing Bacillus subtilis.
    Dauner M; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):132-43. PubMed ID: 11505383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [ResD-ResE two-component system positively regulates gene expression of bacilli guanyl-specific ribonucleases].
    Ul'ianova VV; Zolotova MA; Kharitonova MA; Il'inskaia ON; Vershinina VI
    Mol Gen Mikrobiol Virusol; 2008; (3):23-8. PubMed ID: 18756820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.