These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 28899489)
1. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489 [TBL] [Abstract][Full Text] [Related]
2. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
3. Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently. Park YC; Jun SY; Seo JH J Biotechnol; 2012 Nov; 161(4):402-6. PubMed ID: 22910119 [TBL] [Abstract][Full Text] [Related]
4. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Sasaki M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2010 Apr; 86(4):1057-66. PubMed ID: 20012280 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
6. Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. Kim YS; Kim SY; Kim JH; Kim SC J Biotechnol; 1999 Jan; 67(2-3):159-71. PubMed ID: 9990733 [TBL] [Abstract][Full Text] [Related]
7. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Jo JH; Oh SY; Lee HS; Park YC; Seo JH Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683 [TBL] [Abstract][Full Text] [Related]
8. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
11. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Thestrup HN; Hahn-Hägerdal B Appl Environ Microbiol; 1995 May; 61(5):2043-5. PubMed ID: 7646047 [TBL] [Abstract][Full Text] [Related]
12. Xylitol production by recombinant Saccharomyces cerevisiae. Hallborn J; Walfridsson M; Airaksinen U; Ojamo H; Hahn-Hägerdal B; Penttilä M; Keräsnen S Biotechnology (N Y); 1991 Nov; 9(11):1090-5. PubMed ID: 1367625 [TBL] [Abstract][Full Text] [Related]
13. Production of xylitol from D-xylose by recombinant Lactococcus lactis. Nyyssölä A; Pihlajaniemi A; Palva A; von Weymarn N; Leisola M J Biotechnol; 2005 Jul; 118(1):55-66. PubMed ID: 15916828 [TBL] [Abstract][Full Text] [Related]
14. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
15. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Govinden R; Pillay B; van Zyl WH; Pillay D Appl Microbiol Biotechnol; 2001 Jan; 55(1):76-80. PubMed ID: 11234962 [TBL] [Abstract][Full Text] [Related]
16. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Meinander NQ; Hahn-Hägerdal B Appl Environ Microbiol; 1997 May; 63(5):1959-64. PubMed ID: 9143128 [TBL] [Abstract][Full Text] [Related]
17. Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene. Han JH; Park JY; Yoo KS; Kang HW; Choi GW; Chung BW; Min J Arch Microbiol; 2011 May; 193(5):335-40. PubMed ID: 21279628 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae. Tani T; Taguchi H; Fujimori KE; Sahara T; Ohgiya S; Kamagata Y; Akamatsu T J Biosci Bioeng; 2016 Oct; 122(4):446-55. PubMed ID: 27067371 [TBL] [Abstract][Full Text] [Related]
19. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
20. A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene. Lidén G; Walfridsson M; Ansell R; Anderlund M; Adler L; Hahn-Hägerdal B Appl Environ Microbiol; 1996 Oct; 62(10):3894-6. PubMed ID: 8837449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]