These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28899675)

  • 21. Opportunities and challenges in biological lignin valorization.
    Beckham GT; Johnson CW; Karp EM; Salvachúa D; Vardon DR
    Curr Opin Biotechnol; 2016 Dec; 42():40-53. PubMed ID: 26974563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Similarities in Recalcitrant Structures of Industrial Non-Kraft and Kraft Lignin.
    Tricker AW; Stellato MJ; Kwok TT; Kruyer NS; Wang Z; Nair S; Thomas VM; Realff MJ; Bommarius AS; Sievers C
    ChemSusChem; 2020 Sep; 13(17):4624-4632. PubMed ID: 32539201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective conversion of biorefinery lignin into dicarboxylic acids.
    Ma R; Guo M; Zhang X
    ChemSusChem; 2014 Feb; 7(2):412-5. PubMed ID: 24464928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review.
    Liu Y; Luo G; Ngo HH; Guo W; Zhang S
    Bioresour Technol; 2020 Feb; 298():122511. PubMed ID: 31839492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Approaches to the selective catalytic conversion of lignin: a grand challenge for biorefinery development.
    Bozell JJ
    Top Curr Chem; 2014; 353():229-55. PubMed ID: 24696353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass.
    Korányi TI; Fridrich B; Pineda A; Barta K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery.
    Jardim JM; Hart PW; Lucia L; Jameel H
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32796539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.
    Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G
    Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin from rice straw Kraft pulping: effects on soil aggregation and chemical properties.
    Xiao C; Bolton R; Pan WL
    Bioresour Technol; 2007 May; 98(7):1482-8. PubMed ID: 17126013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review.
    Jindal M; Uniyal P; Thallada B
    Bioresour Technol; 2023 Oct; 385():129396. PubMed ID: 37369316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.
    Ma R; Guo M; Lin KT; Hebert VR; Zhang J; Wolcott MP; Quintero M; Ramasamy KK; Chen X; Zhang X
    Chemistry; 2016 Jul; 22(31):10884-91. PubMed ID: 27373451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging biorefinery technologies for Indian forest industry to reduce GHG emissions.
    Sharma N; Nainwal S; Jain S; Jain S
    Ecotoxicol Environ Saf; 2015 Nov; 121():105-9. PubMed ID: 25957849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.
    Arslan B; Colpan M; Ju X; Zhang X; Kostyukova A; Abu-Lail NI
    Biomacromolecules; 2016 May; 17(5):1705-15. PubMed ID: 27065303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The current and emerging sources of technical lignins and their applications.
    Li T; Takkellapati S
    Biofuel Bioprod Biorefin; 2018 Jul; 0():1-32. PubMed ID: 30220952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products.
    Khan RJ; Lau CY; Guan J; Lam CH; Zhao J; Ji Y; Wang H; Xu J; Lee DJ; Leu SY
    Bioresour Technol; 2022 Feb; 346():126419. PubMed ID: 34838966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal carbonization of pulp mill streams.
    Wikberg H; Ohra-Aho T; Honkanen M; Kanerva H; Harlin A; Vippola M; Laine C
    Bioresour Technol; 2016 Jul; 212():236-244. PubMed ID: 27107340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.
    Kudahettige-Nilsson RL; Helmerius J; Nilsson RT; Sjöblom M; Hodge DB; Rova U
    Bioresour Technol; 2015 Jan; 176():71-9. PubMed ID: 25460986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.
    Luque L; Westerhof R; Van Rossum G; Oudenhoven S; Kersten S; Berruti F; Rehmann L
    Bioresour Technol; 2014 Jun; 161():20-8. PubMed ID: 24681340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of Lignin Models by Photoredox Catalysis.
    Zhang J
    ChemSusChem; 2018 Sep; 11(18):3071-3080. PubMed ID: 29989337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.