BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28899942)

  • 1. Trz1, the long form RNase Z from yeast, forms a stable heterohexamer with endonuclease Nuc1 and mutarotase.
    Ma M; Li de la Sierra-Gallay I; Lazar N; Pellegrini O; Lepault J; Condon C; Durand D; van Tilbeurgh H
    Biochem J; 2017 Oct; 474(21):3599-3613. PubMed ID: 28899942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of Trz1, the long form RNase Z from yeast.
    Ma M; Li de la Sierra-Gallay I; Lazar N; Pellegrini O; Durand D; Marchfelder A; Condon C; van Tilbeurgh H
    Nucleic Acids Res; 2017 Jun; 45(10):6209-6216. PubMed ID: 28379452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based functional annotation: yeast ymr099c codes for a D-hexose-6-phosphate mutarotase.
    Graille M; Baltaze JP; Leulliot N; Liger D; Quevillon-Cheruel S; van Tilbeurgh H
    J Biol Chem; 2006 Oct; 281(40):30175-85. PubMed ID: 16857670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z.
    Chen Y; Beck A; Davenport C; Chen Y; Shattuck D; Tavtigian SV
    BMC Mol Biol; 2005 May; 6():12. PubMed ID: 15892892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6.
    Skowronek E; Grzechnik P; Späth B; Marchfelder A; Kufel J
    RNA; 2014 Jan; 20(1):115-30. PubMed ID: 24249226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meiotic viral attenuation through an ancestral apoptotic pathway.
    Gao J; Chau S; Chowdhury F; Zhou T; Hossain S; McQuibban GA; Meneghini MD
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16454-16462. PubMed ID: 31266891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entamoeba histolytica: molecular characterization of an aldose 1-epimerase (mutarotase).
    Villalobo E; Wender N; Mirelman D
    Exp Parasitol; 2005 Jul; 110(3):298-302. PubMed ID: 15869755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a yeast mutant lacking the mitochondrial nuclease.
    Zassenhaus HP; Hofmann TJ; Uthayashanker R; Vincent RD; Zona M
    Nucleic Acids Res; 1988 Apr; 16(8):3283-96. PubMed ID: 2836791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae.
    Gowsalya R; Ravi C; Kannan M; Nachiappan V
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30776074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overproduction of yeast viruslike particles by strains deficient in a mitochondrial nuclease.
    Liu YX; Dieckmann CL
    Mol Cell Biol; 1989 Aug; 9(8):3323-31. PubMed ID: 2552292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p.
    Scott A; Timson DJ
    FEMS Yeast Res; 2007 May; 7(3):366-71. PubMed ID: 17253981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures and enzyme mechanisms of a dual fucose mutarotase/ribose pyranase.
    Lee KH; Ryu KS; Kim MS; Suh HY; Ku B; Song YL; Ko S; Lee W; Oh BH
    J Mol Biol; 2009 Aug; 391(1):178-91. PubMed ID: 19524593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the monosaccharide specificity of Escherichia coli rhamnose mutarotase.
    Ryu KS; Kim JI; Cho SJ; Park D; Park C; Cheong HK; Lee JO; Choi BS
    J Mol Biol; 2005 May; 349(1):153-62. PubMed ID: 15876375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.
    Dzierzbicki P; Kaniak-Golik A; Malc E; Mieczkowski P; Ciesla Z
    Mutat Res; 2012 Dec; 740(1-2):21-33. PubMed ID: 23276591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 death signal is mainly mediated by Nuc1(EndoG) in the yeast Saccharomyces cerevisiae.
    Palermo V; Mangiapelo E; Piloto C; Pieri L; Muscolini M; Tuosto L; Mazzoni C
    FEMS Yeast Res; 2013 Nov; 13(7):682-8. PubMed ID: 23875998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli.
    Bouffard GG; Rudd KE; Adhya SL
    J Mol Biol; 1994 Dec; 244(3):269-78. PubMed ID: 7966338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D models of yeast RNase P/MRP proteins Rpp1p and Pop3p.
    Dlakić M
    RNA; 2005 Feb; 11(2):123-7. PubMed ID: 15613537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and role of fucose mutarotase in mammalian cells.
    Park D; Ryu KS; Choi D; Kwak J; Park C
    Glycobiology; 2007 Sep; 17(9):955-62. PubMed ID: 17602138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the function of an ORF: Salmonella enterica DeoM protein is a new mutarotase specific for deoxyribose.
    Assairi L; Bertrand T; Ferdinand J; Slavova-Azmanova N; Christensen M; Briozzo P; Schaeffer F; Craescu CT; Neuhard J; Bârzu O; Gilles AM
    Protein Sci; 2004 May; 13(5):1295-303. PubMed ID: 15075407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution X-ray structure of galactose mutarotase from Lactococcus lactis.
    Thoden JB; Holden HM
    J Biol Chem; 2002 Jun; 277(23):20854-61. PubMed ID: 11907040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.