These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 28900008)
1. Targeting CXCR4-dependent immunosuppressive Ly6C Jung K; Heishi T; Incio J; Huang Y; Beech EY; Pinter M; Ho WW; Kawaguchi K; Rahbari NN; Chung E; Kim JK; Clark JW; Willett CG; Yun SH; Luster AD; Padera TP; Jain RK; Fukumura D Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10455-10460. PubMed ID: 28900008 [TBL] [Abstract][Full Text] [Related]
2. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Jung K; Heishi T; Khan OF; Kowalski PS; Incio J; Rahbari NN; Chung E; Clark JW; Willett CG; Luster AD; Yun SH; Langer R; Anderson DG; Padera TP; Jain RK; Fukumura D J Clin Invest; 2017 Aug; 127(8):3039-3051. PubMed ID: 28691930 [TBL] [Abstract][Full Text] [Related]
3. VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFβR signaling-dependent manner. Pham K; Luo D; Siemann DW; Law BK; Reynolds BA; Hothi P; Foltz G; Harrison JK Cancer Lett; 2015 Apr; 360(1):60-7. PubMed ID: 25676691 [TBL] [Abstract][Full Text] [Related]
4. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. Zeng Y; Li B; Liang Y; Reeves PM; Qu X; Ran C; Liu Q; Callahan MV; Sluder AE; Gelfand JA; Chen H; Poznansky MC FASEB J; 2019 May; 33(5):6596-6608. PubMed ID: 30802149 [TBL] [Abstract][Full Text] [Related]
5. Anti-VEGF/VEGFR2 Monoclonal Antibodies and their Combinations with PD-1/PD-L1 Inhibitors in Clinic. Gao F; Yang C Curr Cancer Drug Targets; 2020; 20(1):3-18. PubMed ID: 31729943 [TBL] [Abstract][Full Text] [Related]
6. Circulating vascular endothelial growth factor receptor 2/pAkt-positive cells as a functional pharmacodynamic marker in metastatic colorectal cancers treated with antiangiogenic agent. Shin SJ; Hwang JW; Ahn JB; Rha SY; Roh JK; Chung HC Invest New Drugs; 2013 Feb; 31(1):1-13. PubMed ID: 22539090 [TBL] [Abstract][Full Text] [Related]
7. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Biasci D; Smoragiewicz M; Connell CM; Wang Z; Gao Y; Thaventhiran JED; Basu B; Magiera L; Johnson TI; Bax L; Gopinathan A; Isherwood C; Gallagher FA; Pawula M; Hudecova I; Gale D; Rosenfeld N; Barmpounakis P; Popa EC; Brais R; Godfrey E; Mir F; Richards FM; Fearon DT; Janowitz T; Jodrell DI Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28960-28970. PubMed ID: 33127761 [TBL] [Abstract][Full Text] [Related]
8. "γδT Cell-IL17A-Neutrophil" Axis Drives Immunosuppression and Confers Breast Cancer Resistance to High-Dose Anti-VEGFR2 Therapy. Zhang Z; Yang C; Li L; Zhu Y; Su K; Zhai L; Wang Z; Huang J Front Immunol; 2021; 12():699478. PubMed ID: 34721375 [TBL] [Abstract][Full Text] [Related]
9. Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics. Wei R; Li J; Lin W; Pang X; Yang H; Lai S; Wei X; Jiang X; Yuan Y; Yang R Acta Biomater; 2024 Mar; 177():414-430. PubMed ID: 38360292 [TBL] [Abstract][Full Text] [Related]
10. VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-cell lung cancers. Watanabe H; Ichihara E; Kayatani H; Makimoto G; Ninomiya K; Nishii K; Higo H; Ando C; Okawa S; Nakasuka T; Kano H; Hara N; Hirabae A; Kato Y; Ninomiya T; Kubo T; Rai K; Ohashi K; Hotta K; Tabata M; Maeda Y; Kiura K Cancer Sci; 2021 May; 112(5):1853-1864. PubMed ID: 33410241 [TBL] [Abstract][Full Text] [Related]
11. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Guleng B; Tateishi K; Ohta M; Kanai F; Jazag A; Ijichi H; Tanaka Y; Washida M; Morikane K; Fukushima Y; Yamori T; Tsuruo T; Kawabe T; Miyagishi M; Taira K; Sata M; Omata M Cancer Res; 2005 Jul; 65(13):5864-71. PubMed ID: 15994964 [TBL] [Abstract][Full Text] [Related]
12. Deflection of vascular endothelial growth factor action by SS18-SSX and composite vascular endothelial growth factor- and chemokine (C-X-C motif) receptor 4-targeted therapy in synovial sarcoma. Wakamatsu T; Naka N; Sasagawa S; Tanaka T; Takenaka S; Araki N; Ueda T; Nishizawa Y; Yoshikawa H; Itoh K Cancer Sci; 2014 Sep; 105(9):1124-34. PubMed ID: 24975049 [TBL] [Abstract][Full Text] [Related]
14. Delivery of siRNA Using CXCR4-targeted Nanoparticles Modulates Tumor Microenvironment and Achieves a Potent Antitumor Response in Liver Cancer. Liu JY; Chiang T; Liu CH; Chern GG; Lin TT; Gao DY; Chen Y Mol Ther; 2015 Nov; 23(11):1772-1782. PubMed ID: 26278330 [TBL] [Abstract][Full Text] [Related]
15. The effect of bevacizumab on human malignant melanoma cells with functional VEGF/VEGFR2 autocrine and intracrine signaling loops. Adamcic U; Skowronski K; Peters C; Morrison J; Coomber BL Neoplasia; 2012 Jul; 14(7):612-23. PubMed ID: 22904678 [TBL] [Abstract][Full Text] [Related]
16. Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Xu L; Duda DG; di Tomaso E; Ancukiewicz M; Chung DC; Lauwers GY; Samuel R; Shellito P; Czito BG; Lin PC; Poleski M; Bentley R; Clark JW; Willett CG; Jain RK Cancer Res; 2009 Oct; 69(20):7905-10. PubMed ID: 19826039 [TBL] [Abstract][Full Text] [Related]
17. Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. Khan MA; Srivastava SK; Zubair H; Patel GK; Arora S; Khushman M; Carter JE; Gorman GS; Singh S; Singh AP J Biol Chem; 2020 Jun; 295(25):8413-8424. PubMed ID: 32358063 [TBL] [Abstract][Full Text] [Related]
18. CXCL12/CXCR4 Axis-Targeted Dual-Functional Nano-Drug Delivery System Against Ovarian Cancer. Xue J; Li R; Gao D; Chen F; Xie H Int J Nanomedicine; 2020; 15():5701-5718. PubMed ID: 32848392 [TBL] [Abstract][Full Text] [Related]
19. Toxoplasma gondii profilin promotes recruitment of Ly6Chi CCR2+ inflammatory monocytes that can confer resistance to bacterial infection. Neal LM; Knoll LJ PLoS Pathog; 2014 Jun; 10(6):e1004203. PubMed ID: 24945711 [TBL] [Abstract][Full Text] [Related]
20. Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo. Mashima T; Wakatsuki T; Kawata N; Jang MK; Nagamori A; Yoshida H; Nakamura K; Migita T; Seimiya H; Yamaguchi K Sci Rep; 2021 Jul; 11(1):15125. PubMed ID: 34302038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]