These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 28900027)
61. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. Zhou Q; Zhou YN; Jin DJ; Tse-Dinh YC Nucleic Acids Res; 2017 May; 45(9):5349-5358. PubMed ID: 28398568 [TBL] [Abstract][Full Text] [Related]
62. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source. Kosono S; Tamura M; Suzuki S; Kawamura Y; Yoshida A; Nishiyama M; Yoshida M PLoS One; 2015; 10(6):e0131169. PubMed ID: 26098117 [TBL] [Abstract][Full Text] [Related]
63. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study. Jung T; Mack M FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354 [TBL] [Abstract][Full Text] [Related]
64. Investigating Deformylase and Deacylase Activity of Mammalian and Bacterial Sirtuins. Seidel J; Klockenbusch C; Schwarzer D Chembiochem; 2016 Mar; 17(5):398-402. PubMed ID: 26708127 [TBL] [Abstract][Full Text] [Related]
65. The role of loop and beta-turn residues as structural and functional determinants for the lipoyl domain from the Escherichia coli 2-oxoglutarate dehydrogenase complex. Jones DD; Perham RN Biochem J; 2008 Jan; 409(2):357-66. PubMed ID: 17927566 [TBL] [Abstract][Full Text] [Related]
66. Interaction of avidin with the lipoyl domains in the pyruvate dehydrogenase multienzyme complex: three-dimensional location and similarity to biotinyl domains in carboxylases. Hale G; Wallis NG; Perham RN Proc Biol Sci; 1992 Jun; 248(1323):247-53. PubMed ID: 1354363 [TBL] [Abstract][Full Text] [Related]
67. A novel amidotransferase required for lipoic acid cofactor assembly in Bacillus subtilis. Christensen QH; Martin N; Mansilla MC; de Mendoza D; Cronan JE Mol Microbiol; 2011 Apr; 80(2):350-63. PubMed ID: 21338421 [TBL] [Abstract][Full Text] [Related]
68. Kinetics and specificity of reductive acylation of lipoyl domains from 2-oxo acid dehydrogenase multienzyme complexes. Graham LD; Packman LC; Perham RN Biochemistry; 1989 Feb; 28(4):1574-81. PubMed ID: 2655695 [TBL] [Abstract][Full Text] [Related]
69. Structural dependence of post-translational modification and reductive acetylation of the lipoyl domain of the pyruvate dehydrogenase multienzyme complex. Wallis NG; Perham RN J Mol Biol; 1994 Feb; 236(1):209-16. PubMed ID: 8107106 [TBL] [Abstract][Full Text] [Related]
70. A complex lipoate utilization pathway in Listeria monocytogenes. Christensen QH; Hagar JA; O'Riordan MX; Cronan JE J Biol Chem; 2011 Sep; 286(36):31447-56. PubMed ID: 21768091 [TBL] [Abstract][Full Text] [Related]
71. Characterization of Bacillus subtilis ExoA protein: a multifunctional DNA-repair enzyme similar to the Escherichia coli exonuclease III. Shida T; Ogawa T; Ogasawara N; Sekiguchi J Biosci Biotechnol Biochem; 1999 Sep; 63(9):1528-34. PubMed ID: 10540738 [TBL] [Abstract][Full Text] [Related]
72. Lysine acetylation regulates the activity of Escherichia coli pyridoxine 5'-phosphate oxidase. Gu J; Chen Y; Guo H; Sun M; Yang M; Wang X; Zhang X; Deng J Acta Biochim Biophys Sin (Shanghai); 2017 Feb; 49(2):186-192. PubMed ID: 28039149 [TBL] [Abstract][Full Text] [Related]
73. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Frye RA Biochem Biophys Res Commun; 1999 Jun; 260(1):273-9. PubMed ID: 10381378 [TBL] [Abstract][Full Text] [Related]
74. Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor. Cao X; Koch T; Steffens L; Finkensieper J; Zigann R; Cronan JE; Dahl C Elife; 2018 Jul; 7():. PubMed ID: 30004385 [TBL] [Abstract][Full Text] [Related]
75. Identification of sirtuin and its target as the ribosomal protein S4 in Lactobacillus paracasei. Atarashi H; Kawasaki S; Niimura Y; Tanaka N; Okada S; Shiwa Y; Endo A; Nakagawa J J Gen Appl Microbiol; 2016; 62(2):98-105. PubMed ID: 27118078 [TBL] [Abstract][Full Text] [Related]
76. Characterization of Protein Lysine Propionylation in Escherichia coli: Global Profiling, Dynamic Change, and Enzymatic Regulation. Sun M; Xu J; Wu Z; Zhai L; Liu C; Cheng Z; Xu G; Tao S; Ye BC; Zhao Y; Tan M J Proteome Res; 2016 Dec; 15(12):4696-4708. PubMed ID: 27804304 [TBL] [Abstract][Full Text] [Related]
78. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. Li M; Ho PY; Yao S; Shimizu K J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273 [TBL] [Abstract][Full Text] [Related]
79. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. Chen D; Vollmar M; Rossi MN; Phillips C; Kraehenbuehl R; Slade D; Mehrotra PV; von Delft F; Crosthwaite SK; Gileadi O; Denu JM; Ahel I J Biol Chem; 2011 Apr; 286(15):13261-71. PubMed ID: 21257746 [TBL] [Abstract][Full Text] [Related]
80. Altering the sensitivity of Escherichia coli pyruvate dehydrogenase complex to NADH inhibition by structure-guided design. Wang X; Wang A; Zhu L; Hua D; Qin J Enzyme Microb Technol; 2018 Dec; 119():52-57. PubMed ID: 30243387 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]